2072 NトトRN1F Transportation System Performance

Prepared by:

Prepared for:

North Front Range MPO
419 Canyon Avenue, Suite 300
Fort Collins, 80521

This document serves as the Federally-Required
Congestion Management Process for the
North Front Range Metropolitan Planning Organization

Prepared by:

Felsburg Holt \& Ullevig
6300 South Syracuse Way, Suite 600
Centennial, CO 80111
303/721-1440
FHU Reference No. 10-045-10
June 2013
TABLE OF CONTENTS Page
INTRODUCTION 1
Purpose of Annual Transportation System Performance Report 1
Structure of Congestion Management Process 2
DATA COLLECTION - 5
Travel Time Surveys 5
Automobile Occupancy Counts 5
SYSTEM PERFORMANCE MEASURES 6
Roadway 6
Transportation Demand Management 19
Transit -22
Bicycle and Pedestrian 25
Freight -27
Land Use -30
PROGRAMMED AND IMPLEMENTED PROJECTS 32
CMP Role in Project Selection 32
Programmed Projects 32
Implemented Projects -32
External Influences 36
Gas Prices 36
Population and Unemployment Rate -36
Transportation Funding and Gas Tax -38
APPENDIX
LIST OF FIGURES Page
Figure 1. Tier One Corridors 3
Figure 2. CMP Structure 4
Figure 3. Historical Daily Traffic Volumes 7
Figure 4. Average Travel Time 8
Figure 5. Average Total Stopped Delay 9
Figure 6. AM Peak Period Travel Speeds 10
Figure 7. PM Peak Period Travel Speeds 11
Figure 8. I-25 Corridor Levels of Service (Daily) 12
Figure 9. US 287 Corridor Levels of Service (Daily) 14
Figure 10. US 34 Corridor Levels of Service (Daily) 15
Figure 11. Lane Miles of Congestion (LOS E or F) 16
Figure 12. I-25 Corridor Crashes 17
Figure 13. US 287 Corridor Crashes 18
Figure 14. US 34 Corridor Crashes 18
Figure 15. Average Auto Occupancy during Peak Periods 20
Figure 16. Average Auto Occupancy by Time of Day 20
Figure 17. VanGo ${ }^{\text {TM }}$ Routes 21
Figure 18. Growth in SmartTrips ${ }^{\text {TM }}$ Users 22
Figure 19. Annual Transit Ridership 23
Figure 20. Access to Transit by Community 24
Figure 21. Miles of Bicycle Facilities within $1 / 4$ Mile Buffer of Tier One Corridors -25
Figure 22. North Front Range 2010 Average Annual Daily Truck Traffic 29
Figure 23. Jobs/Housing Ratios 30
Figure 24. Average Daily Vehicle-Miles Traveled per Capita -31
Figure 25. 4 -Year Historical Gas Prices in Colorado 36
Figure 26. Population Growth 37
Figure 27. Colorado Unemployment Rates (2008 - January 2013) 37
Figure 28. CDOT Annual Revenue 38
Figure 29. CDOT Highway Users Tax Fund Revenue 39
Figure 30. Percent Change in State Motor Fuel Taxes on Gasoline 39
Figure 31. Federal and State Funding Distributed through NFRMPO to Member Governments 40
LIST OF TABLESPage
Table 1. Level of Service Standards by MPO Municipality 12
Table 2. 2012 SmartTrips ${ }^{\text {TM }}$ Statistics 21
Table 3. 2012 Fort Collins Bicycle and Pedestrian Volumes -26
Table 4. 2012 Connectivity Index Ranking- -26
Table 5. Top Exported Commodities From Larimer and Weld Counties -27
Table 6. Top Commodities with Larimer and Weld Counties as Origin and Destination---28
Table 7. Programmed Projects for FY12-17 33
Table 8. FY 2008-2013 TIP Project Closures -35

INTRODUCTION

Federal requirements state that regions with more than 200,000 people, known as Transportation Management Areas (TMAs), must maintain a Congestion Management Process (CMP) and use it to make informed transportation planning decisions. The Federal Highway Administration (FHWA) defines a CMP as a "systematic transparent process for managing congestion that provides information on transportation system performance and on alternative strategies for alleviating congestion and enhancing mobility." The purpose of the CMP is to define congested corridors in the region, develop strategies to mitigate the congestion, and provide a way to monitor the effectiveness of the strategies. The CMP is also intended to use performance measures to direct funding toward projects and strategies that are most effective for addressing congestion. The official Federal Register regarding the CMP (Title 23, Section 450.320 and Section 500.109) is available in the Appendix. This document serves the Federal reporting requirements for the Congestion Management Process for the North Front Range Metropolitan Planning Organization (NFRMPO).

The NFRMPO completed an update to the region's Congestion Management Process which was adopted by the Planning Council in September 2010. One key change in the CMP is an increased focus on data collection to measure and monitor the transportation system's performance rather than relying heavily on the regional travel demand model for performance measures. In addition to meeting the Federal CMP reporting requirements, the NFRMPO has a desire to use this Transportation System Performance report as a mechanism to provide regional benchmarking to inform transportation investment decisions and to paint a clear picture of the region's transportation system and needs. This report serves to document the system-wide performance measures related to congestion.

Purpose of Annual Transportation System Performance Report

This 2012 Transportation System Performance report has been structured to focus on reporting the system-wide and project-level data collection and performance measures outlined in the 2010 NFRMPO CMP. Since this is the third year of data collection, in many cases this report provides a comparison between 2010, 2011, and 2012 data. In subsequent years, the Transportation System Performance report will continue to document and analyze the trends for each of the performance measures.

As recommended in the 2010 NFRMPO CMP, in the 2010/2011 Call for Projects (for Surface Transportation Program Metropolitan (STP-Metro), Transportation Enhancement, and Congestion Mitigation and Air Quality Improvement Program (CMAQ) funding), project applicants were required to commit to completing before and after data collection. Although these data are not yet available, the project-level data and performance measures will be included in future Transportation System Performance reports.

It is important not only to document the system-wide and project-level performance measures, but also to evaluate the trends in the performance measures over time to identify and analyze the factors affecting congestion-related performance measures. This Transportation System Performance report is intended to benefit the region by:

- Providing measurements of how the region's towns, cities, and counties are doing in terms of managing congestion on an annual basis;
- Guiding project accountability by requiring before and after data collection for all projects funded through the MPO;
- Providing tools and data to inform decisions on how to spend available transportation funding;
- Providing a basis for pursuing additional transportation funding by "painting" a clear picture of the region's transportation needs; and
- Providing supporting data to the Chambers of Commerce and Economic Development Corporations responsible for "selling" the region's transportation system as beneficial for prospective businesses and future economic investment.

Structure of Congestion Management Process

The 2035 Regional Transportation Plan (RTP) Update identifies Tier One of the Regionally Significant Corridors (RSCs) to be the focus of the Congestion Management Process in the North Front Range. Therefore the data collected for this Transportation System Performance report is heavily focused on the Tier One corridors (as defined in the 2035 Regional Transportation Plan), which include I-25, US 287, and US 34 and their parallel facilities, as shown on Figure 1.

US 34 east of I-25 looking west.

I-25 crossing the Cache la Poudre River.

2012 NF 20 M 1 Transportation System Performance
Figure 1. Tier One Corridors

Legend

The structure of the MPO's Congestion Management Process is depicted on Figure 2. The green boxes represent elements of the CMP that establish the state of the region's congestion and what is important to the region in terms of managing or mitigating the congestion.

The beige boxes represent project-level components of the CMP; the CMP serves as both a filter and an incentive in selecting projects for the Transportation Improvement Program (TIP), and all projects that receive funding through the MPO are required to collect before and after data. Finally, the blue colored box represents the systemic component of the CMP; regional and corridor-level data are to be collected on an annual basis to compare the state of the region in terms of congestion levels on a year to year basis. Both the system monitoring and the project-level data collection are documented and analyzed in this Transportation System Performance report.

US 287 near Prospect Road in Fort Collins.

Figure 2. CMP Structure

DATA COLLECTION

The data collected for this Transportation System Performance Report are primarily centered on the Tier One corridors since they are the focus of the CMP; however, some of the performance measures pertain to the region as a whole, in which case region-wide data have been collected. Much of the data in this report are regularly collected by the Colorado Department of Transportation (CDOT), the NFRMPO, the cities and counties, and the transit providers in the region. To supplement the available data, the MPO conducted travel time surveys in 2013, and had automobile occupancy counts recorded along the three Tier One corridors in 2011. Summaries of the data collected and used in this report are provided in the Appendix.

Travel Time Surveys

Travel time surveys were completed for the Tier One corridors. The travel time runs were completed only for the primary facility (i.e., I-25, US 287, and US 34) and not for the parallel routes, with the exception of US 34 Business, as travel conditions on primary facilities can

A stopwatch was used to record the travel time between major intersections along each corridor. cause travel on parallel facilities to vary. The surveys were completed on Tuesdays, Wednesdays, or Thursdays during January through March 2013 by NFRMPO staff to reflect typical weekday conditions and coincide with the area's transportation model. The survey involved driving the length of each facility within the MPO boundary in each direction and recording the travel time between major intersections along the corridor, using the "floating car" methodology in which the test vehicle passes as many vehicles as pass the test vehicle. Any intersection-related delays (stopped delays) were recorded, including information about the delay length and location. The data collection included four runs in each direction for each facility during the morning and afternoon peak periods and two runs in each direction for each facility during the noon peak period. The results of the runs for each time period were then averaged to determine an average delay along each corridor during each time period. If a major traffic crash or adverse weather occurred, the travel time run was not used.

Automobile Occupancy Counts

Automobile occupancy counts were recorded in 201 lat two locations on each of the three primary facilities of the Tier One corridors to understand the level of carpooling over time. Each travel lane was video recorded, and the number of persons per vehicle was counted. The counts were recorded during the morning, noon, and afternoon peak periods at these locations:

Video recordings of highway locations were used to count the number of passengers in each passing cars.

- I-25 south of US 34
- I-25 south of SH 14
- US 34 between US 287 and I-25
- US 34 between US 34 Business and US 85
- US 287 south of US 34
- US 287 south of SH 14

SYSTEM PERFORMANCE MEASURES
The 2010 NFRMPO CMP outlines a series of performance measures related to recurring and non-recurring congestion to be used to assess the extent of congestion, changes in levels of congestion over time, and to evaluate the effectiveness of congestion reduction and mobility enhancement strategies. The performance measures have been divided into five categories:

- Roadway
- Transportation Demand Management
- Transit
- Bicycle and Pedestrian
- Land Use

Because this is the NFRMPO's third Transportation System Performance report based on a systematic data collection and compilation effort, in many cases the performance measures in the following sections provide only three years of data. In subsequent Transportation System Performance

Access to alternative travel modes like transit and bicycling - can help to offset roadway congestion. reports, the measures will continue to be compared over time to understand trends in the transportation system.

Roadway

The roadway-based performance measures rely heavily on the daily traffic counts that CDOT maintains in their count database.

Traffic Volumes

The daily traffic volumes on the primary facility of the three Tier One corridors over the past decade are shown on Figure 3. From this graph, several observations can be made:

- I-25 south of US 34 carries nearly three times the volume of traffic as l-25 north of Fort Collins (south of SH 1).
- Traffic volumes on I-25 south of US 34, I-25 south of SH 1, and US 34 east of County Line Road remained the same as in 2011.
- I-25 south of SH 1 has experienced the greatest percentage increase in traffic over the past decade (about 21 percent since 2002), while US 34 east of County Line Road has experienced the second largest increase over this time period (about 15 percent).
- Traffic volumes on US 34 west of WCR 53 continued to decline, falling almost 10 percent since last year.
- Traffic volumes on US 287 south of US 34 in Loveland and south of SH 14 in Fort Collins grew compared to 2011, with an increase of 33 and 11 percent respectively. This is in contrast to the general decreasing trend of both locations over the past five years. However, counts on segments between these two locations generally decreased.

Figure 3. Historical Daily Traffic Volumes

Source: CDOT traffic volume database

Travel Time

Travel time studies were conducted along the three primary facilities of the Tier One corridors, as described in the Data Collection section of this report, and US 34 Business. Slight changes in travel time between 2012 and 2013 varied per time period and facility. As illustrated on
Figure 4, average travel time along l-25 from SH 66 on the south end of the MPO to SH 1 on the north end of the MPO was measured to be approximately 29 minutes during all three peak periods of the day. These results show the travel times on l-25 to be consistent (and therefore predictable) during normal weekday conditions (Tuesday - Thursday).

The US 287 travel time survey results show more variability between the different periods of the day. While the average travel time from SH 66 to SH 14 on US 287 is approximately 53 minutes during the $A M$ peak period, the average travel time during the $P M$ peak period is approximately 59 minutes. This difference is very consistent from year to year.

The travel times along the US 34 corridor from Wilson Avenue in Loveland to US 85 via the US 34 Bypass also show some variability depending on time of day. While the average travel time is approximately 31 minutes during the AM peak period, the average travel time during the PM peak period is approximately 35 minutes. Travel times along US 34 Business are more consistent, with less than a minute difference between the three periods of the day.

As a part of the travel time surveys completed in early 2013, stopped delay was recorded. Stopped delay typically occurs at the approach to a signalized intersection or in severe congestion along a freeway; it represents the amount of time a driver can expect to be stopped in his vehicle while traveling the length of the corridor. As shown on Figure 5, no stopped delay was recorded on I-25. The average total stopped delay of all three time periods along US 287 was higher in the southbound direction, and the stopped delay was higher in the westbound direction US 34. US 34 Business saw a trend reversal, with eastbound traffic experiencing more stop delay than westbound traffic in the 2013 data.

2012 NFFN1FO
Transportation System Performance
Figure 4. Average Travel Time

Source: NFRMPO trovel time surveys, 2013

Figure 5. Average Total Stopped Delay

Source: NFRMPO trovel time surveys, 2013

Using the travel time data, the actual speeds along the various segments of the three corridors (l-25, US 287, and US 34) and US 34 Business were compared to the posted speed limits. A comparison of the recorded travel speeds with the posted speeds by direction of travel during the AM peak period is provided in Figure 6. Along l-25, nearly all segments tend to be within five mph of the posted speed limit. The majority of the US 287 corridor north of Berthoud through Loveland and Fort Collins has travel speeds that are between five and 15 mph slower than the posted speed, but a segment between SH 392 and Harmony Road, and a segment in Loveland just south of US 34, have travel speeds 15 to 20 mph slower than the speed limit. Along the US 34 corridor, travel speeds west of WCR 13 are slower than last year. Speeds are generally five to 10 mph slower than the speed limit, with some segments having even lower speeds. Slower speeds are also experienced on US 34 within Greeley, with speeds varying significantly but are slowest between $65^{\text {th }}$ Avenue and $47^{\text {th }}$ Avenue $(20+$ mph slower than the posted speed limit). US 34 Business shows similar variability in travel speeds.

Figure 6. AM Peak Period Travel Speeds

Figure 7 provides a comparison of the recorded speeds during the PM peak periods with the posted speeds. In general, the same segments that experienced slowing in the AM peak period experienced slowing in the PM peak period, but had an increased level of slowing. Segments are also generally slower than compared to 2012 . Segments along $\mathrm{l}-25$ generally experience speeds within five mph of the posted speed limit, but a growing number of segments are five to 10 mph below the speed limit. Segments on US 287 north of US 34 experience varying levels of speeds below the speed limit and are generally consistent with last year. Southbound US 287 on the Berthoud Bypass now has speeds five to 10 mph below the posted speed limit. US 34 west of WCR 13 experience a significant amount of slowing, with speeds recorded 20+ mph below the speed limit on a number of segments. Similar slowing was observed within Greeley and is a modest reduction in speed compared to last year.

Figure 7. PM Peak Period Travel Speeds

Levels of Service

A system wide measure which is a good indicator of the impacts of growth on transportation is level of service (LOS). This LOS analysis is based on the most current daily traffic counts (2012 for all state highways and between 2005-2012 for non-state highways) and does not explicitly account for intersection operations or peak period delays. However, it does provide a straightforward means of comparing the daily volumes on various segments of the Tier One corridors to the capacities of those facilities, and will serve as a comparison of the daily LOS over time. Table 1 documents the LOS standards set by each MPO municipality.

What is Level of Service?

Level of service (LOS) is a qualitative measure which describes operating conditions, or traffic flow rates. LOS A represents a free flow condition, and LOS F represents a breakdown of traffic flow with excessive congestion and delay. Existing daily levels of service have been calculated on all Tier One corridors based on the daily traffic volumes divided by the planning level roadway capacities (V/C). Congestion, as defined in the Congestion Management Process, is LOS E (V/C is between 0.9 and 1.0) or LOS F (V/C is 1.0 or greater), with E nearing capacity and F over capacity.

Table 1. Level of Service Standards by MPO Municipality

Entity	LOS C	LOS D	LOS E	Not Specified
Berthoud	\bullet			
Eaton				•
Evans		\bullet		
Fort Collins		\bullet	\bullet	
Garden City				•
Greeley	\bullet			
Johnstown		\bullet		
Larimer County	\bullet^{2}	\bullet^{2}		
LaSalle		\bullet^{3}		
Loveland	\bullet^{3}	\bullet^{3}		
Milliken	\bullet^{4}	\bullet^{4}		
Severance				
Timnath			\bullet	
Weld County	•			
Windsor	\bullet			

${ }^{1}$ Fort Collins uses LOS D or LOS E depending on the arterial or corridor.
${ }^{2}$ Larimer County uses LOS C for rural areas and LOS D for urban areas.
${ }^{3}$ Loveland uses LOS D for State Highways and LOS C for all other city arterials.
${ }^{4}$ Severance uses LOS C as the standard for unsignalized intersections and LOS D for sianalized intersections.

The LOS ranges on the l-25, US 287, and US 34 corridors are depicted on Figures 8, 9, and 10, respectively. For the I-25 corridor, the LOS of the western parallel route improved slightly over 2011 between Harmony Road and Prospect Road. The southern parallel route to the US 34 corridor experienced an LOS F between US 287 and LCR 9, a decrease in performance compared to 2011. The segment of US 287 between $37^{\text {th }}$ Street and $57^{\text {th }}$ Street improved due to lower daily volumes, which is in contrast to the two count locations along US 287 documented in Figure 3. Daily volumes around those two locations (south of US 34 and south of SH 14) increased, while daily volumes in between ($37^{\text {th }}$ Street to Mulberry Street) generally decreased. Enough estimated capacity exists to maintain an acceptable LOS along many of the segments that saw an increase in daily volumes.

Figure 8. I-25 Corridor Levels of Service, Based on Daily Volumes

Source: CDOT traffic volume database (2012), planning level capacities

Figure 9. US 287 Corridor Levels of Service, Based on Daily Volumes

Source: CDOT traffic volume database (2012), planning level capacities

Figure 10. US 34 Corridor Levels of Service, Based on Daily Volumes

Source: CDOT traffic volume database (2012), planning level capacities

Daily vs. Peak Hour
 Level of Service

Daily level of service (LOS) provides a rating for a road segment based on how much of its capacity is being used daily (volume over capacity, or V/C). Peak hour LOS provides a rating for intersections based on how much delay drivers experience during the peak hour.

Lane Miles of Congestion

The number of congested roadway lane miles (LOS E or F) on a daily basis for each of the three Tier One corridors is shown on Figure 11 for 2010 to 2012. The congested lane miles correspond to the yellow (LOS E) and red (LOS F) segments depicted on Figures 8 through 10.

The lane miles of congestion are based on daily traffic volumes and planning-level capacities and do not explicitly account for intersection operations or peak period delays. The measure provides a straightforward means of comparing
 the congestion along the corridors (and over time) at a planning level. The $\mathrm{I}-25$ corridor experienced no lane miles of congestion and the US 287 corridor experienced a second year of decrease in lane miles of congestion, each due to their previously mentioned improvements in LOS. US 34 experienced congestion for the first time due to a reduction in LOS on its southern parallel facility from US 287 to LCR 9.

Figure 11. Lane Miles of Congestion (LOS E or F)

Source: CDOT traffic volume database (2012), planning level capacities *No segments of the US 34 corridor had an LOS of E or F in 2010 or 2011, and the I-25 corridor had no segments with an LOS of E or F in 2012, resulting in no lane miles of congestion on these corridors.

Number of Crashes

The number of crashes is a surrogate measure for non－recurring congestion；crashes along a corridor result in unexpected delays and unreliable travel times．Crash data for the Tier One corridors，including the parallel facilities，were obtained from CDOT＇s crash database．Crash data for state highways was available through 2012，but CDOT＇s data post processing for off－ highway system crashes typically lags three to four years behind the state highway system crash database．In 2012，CDOT decided to process both state highway and off－highway system crash data．Because of this change，a gap in available off－highway system data exists from 2008 to 2011.

Figures 12，13，and 14 show the annual number of crashes（as a surrogate for frequency of non－recurring congestion）on the $\mathrm{I}-25$ ，US 287 ，and US 34 corridors，respectively for the time period from 2002 through 2011．The three graphs each use the same scale on the vertical axis to provide a visual comparison between the three corridors．

Crashes on I－25 within the MPO boundary in 2012 have decreased for the first time since 2008， departing from the trend of increasing crashes that occurred from 2008 to 2011．From 2002 to 2007，parallel facilities experienced a rate increase of 45 percent．No data is currently available for these facilities from 2008 to 2011 ，but 2012 appears to continue the previous trend，setting a new high for crashes during the analysis timeframe．

Figure 12．I－25 Corridor Crashes

Source：CDOT crash database

The number of crashes on US 287 has generally decreased since 2002, but increased in 2012. The number of crashes on the parallel facilities (LCR 17 and LCR 19) has decreased steadily from 2002 to 2007, with approximately 30 percent fewer crashes in 2007 compared to 2002. No data is currently available for these facilities from 2008 to 2011 , but 2012 appears to continue the previous trend, setting a new low for crashes during the analysis timeframe.

Figure 13. US 287 Corridor Crashes

Source: CDOT crash database
The number of crashes on US 34 and its parallel facilities have been relatively consistent from year to year over the analysis timeframe. In 2012, US 34 and other state highways (US 34 Business and SH 402) experienced over 800 crashes in a year for the first time since 2007, continuing the slow increasing trend since 2009. Non-state facilities (O Street and WCR 54) have experienced a decrease in crashes of over 20 percent between 2002 and 2007. No data is currently available for these facilities from 2008 to 2011, but 2012 was near the levels of previously available years.

Figure 14. US 34 Corridor Crashes

Source: CDOT crash database

Transportation Demand Management

Transportation Demand Management (TDM) includes actions that improve the efficiency of the transportation system by altering the demand (e.g., traveler behavior) rather than increasing the supply (e.g., roadway capacity). The NFRMPO, the MPO's member governments, and employers based in the region offer various TDM programs aimed at reducing single occupancy vehicle trips, encouraging off-peak travel, and reducing trip time or length. Ultimately, TDM programs can reduce congestion on the transportation system. Future CMP Annual Transportation System Performance Reports will include TDM Employer survey results.

Ridesharing

As described in the Data Collection section, automobile occupancy counts were recorded at two locations along the three primary facilities of the Tier One corridors in 2011. The average number of persons per vehicle at each location is shown in Figure 15. These numbers represent an average occupancy during the AM, noon, and PM peak periods. At the count locations on $\mathrm{I}-25$, nearly 88 percent of the vehicles were single occupancy vehicles (SOV), with 12 percent of the vehicles having one or more passengers. The SOV rate was approximately 84 percent at the US 287 count locations and 85 percent at the US 34 count locations.

Vehicles parked at the park-and-ride lot at I-25 and SH 402 in Loveland.

The 2010 Front Range Travel Counts: NFRMPO Household Survey reports a region-wide ratio of SOV to shared ride trips (by automobile) to be approximately 3:1 for all trips. This ratio indicates a higher rate of ridesharing than the occupancy counts on the Tier One corridors, likely because people tend to travel together (i.e., share a ride) at a higher rate during off-peak times for non-commuting trip purposes.

Figure 15. Average Auto Occupancy during Peak Periods

Source: Automobile Occupancy Counts, 2011

Figure 16 shows the automobile occupancy count results by time of day. As would be expected, the noon peak has a higher occupancy rate than the AM and PM peak periods due to a greater number of non-home based work trips such as work groups carpooling to lunch destinations.

Figure 16. Average Auto Occupancy by Time of Day

Source: Automobile Occupancy Counts, 2011

Vanpool Ridership

One of the NFRMPO's TDM programs is the VanGo ${ }^{\text {TM }}$ vanpooling program, which includes vans that travel to various destinations within the region and between the NFRMPO and Denver region. At the end of 2012, there were 430 riders participating in the VanGo ${ }^{\text {TM }}$ program, resulting in an estimated savings of over a million vehiclemiles of travel per month. As shown on Figure 17, the l-25 corridor carries the highest number of VanGo ${ }^{\text {TM }}$ vans. The number of vans in the program has fluctuated since 2007, with a current fleet of 78 vans.

Figure 17. VanGo ${ }^{\text {TM }}$ Routes

Source: NFRMPO VanGo ${ }^{\text {TM }}$ program

SmartTrips ${ }^{\text {TM }}$

SmartTrips ${ }^{\text {TM }}$ is a web-based tool developed and managed by the NFRMPO to help travelers find alternatives to driving alone. The service provides users with incentives and necessary tools to develop their trips via bike, transit, carpool, vanpool (VanGo ${ }^{\text {TM }}$), and/or walking. Usage statistics and benefits of SmartTrips ${ }^{\text {TM }}$ are shown in Table 2, and the increase in users from 2010 to 2012 is available in Figure 18.

Table 2. 2012 SmartTrips ${ }^{\text {TM }}$ Statistics

Element	Measurement
Average commute distance	23.7 miles
Carbon dioxide reduction	93,998 lbs.
Total number of commutes logged	4,207
Total miles saved	99,852
Total user savings	$\$ 20,969$

Source: NFRMPO SmartTrip ${ }^{\text {TM }}$ website

Figure 18. Growth in SmartTrips ${ }^{\text {TM }}$ Users

Source: NFRMPO SmartTrip ${ }^{\text {TM }}$ website

Transit

There are currently three transit providers that operate publiclyfunded, fixed-route service in the NFR region. Transfort, the largest of the three transit providers, is operated by the City of Fort Collins. Greeley-Evans Transit (GET) is operated by the City of Greeley, and City of Loveland Transit (COLT) is operated by Loveland's Public Works Department. Additionally, there are two demand-responsive services in the region: Berthoud Area Transportation Services (BATS) and Senior Alternatives in Transportation (SAINT).

Transit Ridership

The number of passengers on a transit system over the course of a year is a common performance measure used to assess the productivity of a transit service. The annual ridership over the past four years for the three fixed-route transit providers and the two demand responsive services in the region is provided on Figure 19. Between 2007 and 2009, the three fixed-route systems each experienced a steady growth in ridership. The GET and COLT systems both have experienced a slow decline in ridership since, but both providers once again saw growth in 2012. The Transfort ridership includes FLEX, a regional bus service between Fort Collins and Longmont operated by Transfort. Initialized in 2010, FLEX experienced a 10 percent increase in ridership compared to 2011, while all Transfort ridership has increase 27 percent since 2007. BATS has generally maintained ridership in the range of 12,000-14,000 per year, but dipped below 10,000 in 2012. SAINT generally serves 20,000 - 21,000 riders per year, but recorded a record high ridership of 25,000 in 2012.

2012 NFFN1PO
Transportation System Performance

Figure 19. Annual Transit Ridership
FLEX regional bus service
(source: FLEX website)

Source: Transfort, GET, COLT, BATS, SAINT

Access to Transit

A quarter of a mile is the typical distance a person is willing to walk to get to transit service. Using the NFRMPO's base year 2009 travel demand model land use data, it is estimated that 51 percent of the MPO's population and 64 percent of the MPO's jobs are within a quarter mile of the region's three fixed-route transit services (including the FLEX regional route operated by Transfort). Figure $\mathbf{2 0}$ provides the transit availability by community, with the coverage representing the percent of households within $1 / 4$ mile of transit service. Percentages decreased due to the use of updated municipal boundaries from 2012, with Greeley-Evans Transit having the highest coverage with 75\%, followed by Loveland and Fort Collins with 64\% and 60\%, respectively.

Figure 20. Access to Transit by Community

Transit Availability

(percentage of households within $1 / 4 \mathrm{mi}$. of transit service

Source: Transfort, GET, COLT, 2009 Household Data from NFRMPO Travel Demand Model

Likewise, twelve percent of the MPO's population is within a three mile radius of the region's park and rides, all of which are located along the l-25 corridor. Three miles is the typical catchment area for park and ride facilities. Although these park and ride facilities are currently used only for carpooling, stops for regional transit service are planned for the future.

Bicycle and Pedestrian

Bicycle and Pedestrian Facilities

The availability of bicycle and pedestrian facilities provides an indication of the extent to which travelers are encouraged to choose an alternative mode of travel within the Tier One Corridors. Bicycle facilities maps from each of the member agencies were overlaid on the Tier One corridor maps, and the miles of bicycle facilities within $1 / 4$ mile of the Tier One corridors (including parallel roadway facilities) as of 2013 are shown in Figure 21. Bicycle facilities include multi-use paths, bike lanes, and designated bike routes. Existing bicycle facilities mapping has recently been updated as part of the NFR Regional Bike Plan. Region-wide data on pedestrian facilities are not available at this time.

A pedestrian crossing US 287 in Fort Collins.

Figure 21. Miles of Bicycle Facilities within $1 / 4$ Mile Buffer of Tier One Corridors

Source: NFRMPO Bicycle Facilities GIS database

Bicycle and Pedestrian Volumes

CDOT has recently initiated a statewide bicycle and pedestrian count program, in which the NFRMPO will participate. The locations of the bicycle and pedestrian counts in the region are to be determined, and count data will be summarized in subsequent CMP Annual Transportation System Performance Reports. The only count location received from CDOT was in Greeley along the Poudre Trail. Hourly counts were taken from October 18 ${ }^{\text {th }}, 2012$ through November $15^{\text {th }}, 2012$. The average daily bicycle volume at this location was 98 bicycles, with a maximum of 264 bicycles and a minimum of 6 bicycles.

The NFRMPO Regional Bike Plan in 2012 also seeks to provide more bicycle count locations. Table 3 lists bicycle and pedestrian volumes from the City of Fort Collins acquired during May, July, and September of 2012 for ten different locations.

Table 3. 2012 Fort Collins Bicycle and Pedestrian Volumes

Location	Maximum 2-Hour Count	Average 2-Hour Count	Estimaied Average Annual Volume
Poudre Trail at Taft Hill Parking Lot	163	88	271,000
Poudre Trail at Lee Martinez Park	321	171	474,000
Poudre Trail at Timberline	98	66	203,000
Spring Creek Trail at Drake	275	158	477,000
Spring Creek Trail at Lilac Park	193	148	472,000
Spring Creek Trail at Creekside Park	274	199	650,000
Spring Creek Trail at Edora Park	209	160	515,000
Fossil Creek Trail at Spring Canyon Park	159	91	264,000
Mason Trail at Horsetooth	148	81	240,000
Power Trail at Horsetooth	162	93	296,000

Connectivity Index

A connectivity index, which involves dividing the number of links for an area by the number of intersections, helps quantify how well a roadway network connects destinations. A higher index means that travelers have increased route choice, allowing more direct connections for access between any two locations. This measure is an indicator of the walkability of a community as well as the land use pattern. Table 4 lists each MPO member municipality with their connectivity index score and rank.

Table 4. 2012 Connectivity Index Ranking

Location	Connectivity Index Score	Rank
Garden City	2.111	1
Windsor	1.953	2
Timnath	1.947	3
Milliken	1.931	4
Severance	1.922	5
Berthoud	1.898	6
Eaton	1.863	7
Fort Collins	1.836	8
Johnstown	1.829	9
Greeley	1.820	10
Evans	1.812	11
La Salle	1.807	12
Loveland	1.794	13

Freight

CDOT recently produced the Commodities Transported by Region: Larimer and Weld Counties for North Front Range MPO report as part of its ongoing process of documenting freight by regions in Colorado. Table 5 lists the top exported commodities originating from Larimer and Weld Counties in 2010 by weight and by value.

The commodities originating from the area are transported out by truck, rail, and other modes. In 2010, trucking transported 99.9 percent of all commodities by both weight and value. Rail and other modes accounted for the remaining 0.1 percent.

The report also documents the top commodities transported within Larimer and Weld Counties in 2010, which is documented in Table 6. The overall percentage of commodities that both originate and terminate within Larimer and Weld Counties in 2010 by weight was 32.4 percent and by value was 4.5 percent.

Figure 22 maps the average annual daily truck traffic on highways within the MPO.
Table 5. Top Exported Commodities From Larimer and Weld Counties

Commodity	Amount	\% of Total	Rank
By Weight (Tons) in 2010			
Gravel or Sand	3,728,666	21.0\%	1
Ready-mix Concrete, Wet	2,749,316	15.5\%	2
Cash Grains, NEC	1,658,816	9.4\%	3
Broken Stone or Riprap	1,557,122	8.8\%	4
Warehouse \& Distribution Center ${ }^{1}$	1,278,740	7.2\%	
Petroleum Refining Products	1,002,032	5.6\%	5
Malt Liquors	588,770	3.3\%	7
Other Commodities ${ }^{2}$	5,177,392	29.2\%	
TOTAL		17,740,853	
By Value (\$) in 2010			
Warehouse \& Distribution Center ${ }^{1}$	\$1,357,197,621	11\%	
Petroleum Refining Products	\$915,325,292	7.4\%	1
Cash Grains, NEC	\$904,829,257	7.3\%	2
Meat, Fresh or Chilled	\$646,142,083	5.2\%	3
Malt Liquors	\$540,374,380	4.4\%	4
Meat, Fresh Frozen	\$479,954,763	3.9\%	5
Drugs	\$460,561,819	3.7\%	6
Misc. Internal Combustion Engines	\$422,040,145	3.4\%	7
Other Commodities ${ }^{2}$	\$6,601,185,601	53.5\%	
TOTAL		2,327,610,9	

Source: CDOT Commodities Transported by Region: Larimer and Weld Counties for North Front Range MPO, Tables $1 A$ and $1 B$
${ }^{1}$ Secondary commodities not produced in the region but travel through it. These commodities are not factored into the ranking, but are part of the overall total.
${ }^{2}$ Other Commodities are not factored into the ranking, but are part of the overall total.

Table 6. Top Commodities with Larimer and Weld Counties as Origin and Destination

Commodity	Amount	\% of Total	Rank
By Weight (Tons) in 2010			
Gravel or Sand	$4,017,715$	42.4%	1
Broken Stone or Riprap	$3,998,713$	42.2%	2
Ready-mix Concrete, Wet	448,059	4.7%	3
Livestock	210,843	2.2%	4
Warehouse \& Distribution Center'	125,292	1.3%	
Grain	120,519	1.3%	5
Dairy Farm Products	105,360	1.1%	6
TOTAL	$9,467,025$		
Livestock	By Value (\$) in 2010		
Warehouse \& Distribution Center'	$\$ 374,335,132$	34.6%	
Dairy Farm Products	$\$ 132,978,943$	12.3%	1
Petroleum Refining Products	$\$ 90,697,946$	8.4%	2
Meat, Fresh or Chilled	$\$ 59,356,472$	5.5%	3
Meat Products	$\$ 40,723,175$	3.8%	4
Meat Fresh Frozen	$\$ 40,139,936$	3.7%	5
Ready Wet Mix Concrete	$\$ 38,244,808$	3.5%	6
TOTAL	$\$ 30,898,500$	2.9%	9

Source: CDOT Commodities Transported by Region: Larimer and Weld Counties for North Front Range MPO, Tables 7A and $7 B$
${ }^{1}$ Secondary commodities not produced in the region but travel through it. These commodities are not factored into the ranking, but are part of the overall total.

Figure 22．North Front Range 2010 Average Annual Daily Truck Traffic

Source：CDOT Commodities Transported by Region： Larimer and Weld Counties for North Front Range MPO

Land Use

Land use patterns and densities play a significant role in the demands on the transportation system. For this Transportation System Performance Report, two performance measures are used to measure (and compare over time) the efficiency of the region's land use as is relates to the demand for travel.

Jobs/Housing Balance

The availability of different land uses within a community or subarea can affect the way people travel. A balance of jobs and housing reduces the need for long distance (out of town or out of region) travel and ultimately can contribute to reduced levels of congestion. A general target standard for a jobs/housing ratio is 1.5 , which implies a balance based on an average number of workers per household of approximately 1.5. (Source: Jobs Housing Balance, APA Planning Advisory Service Report Number 516, November 2003)

Figure 23 displays the ratio of jobs to households for each of the 13 municipalities in the NFRMPO; the rural category represents those areas which are unincorporated. The employment and household data are from the 2009 base year model and 2012 municipal boundaries. Region-wide, the jobs/housing ratio is estimated to be 1.33. The three major cities (Fort Collins, Greeley and Loveland) have higher average jobs/housing ratios, which are generally in line with the target standard of 1.5 . Most of the smaller communities have significantly fewer job opportunities in comparison to the number of households. There are two notable exceptions shown in Figure 22: Timnath and Garden City both have jobs/housing ratios which are higher than the region-wide average. Timnath's over 4:1 ratio is a result of the recent substantial commercial development near I-25 and Harmony Road. Region-wide, the average distance for work-related trips is 8.5 miles (source: 2010 Front Range Travel Counts: NFRMPO Household Survey).

Figure 23. Jobs/Housing Ratios

Source: NFRMPO travel demand model, base year 2009

VMT per Capita

On average, a person living in the NFRMPO travels nearly 4.8 miles on the $\mathrm{I}-25$ corridor, 2.4 miles on the US 287 corridor, and 2.8 miles on the US 34 corridor on a daily basis. These numbers, as shown on Figure 24, are calculated by dividing the total vehicle-miles of travel (VMT) on each Tier One corridor (including the parallel facilities) by the region's 2009
population. Vehicle-miles of travel per capita in 2012 remained almost the same as in 2011 for each corridor. The l-25 corridor experienced a slight increase, while the US 287 and US 34 corridors each experienced a slight decrease.

Figure 24. Average Daily Vehicle-Miles Traveled per Capita

Source: CDOT traffic volume database (2012), 2009 population from NFRMPO travel demand model

PROGRAMMED AND IMPLEMENTED PROJECTS

CMP Role in Project Selection

The NFRMPO's CMP serves an important role in the selection of projects for the Transportation Improvement Program (TIP). Federal regulations specify that all reasonable congestion management strategies must be evaluated and deemed ineffective or infeasible prior to considering a roadway capacity increase as a congestion management approach. Since the MPO's CMP is focused on the Tier One corridors, this requirement only applies to projects on the I-25, US 287, and US 34 corridors.

In support of the CMP, all projects (regardless of the corridor Tier) vying for federal or state funding through the NFRMPO must:

- Identify the primary objective(s) of the project
- Identify performance measures to assess how well the project meets its intended objective(s)
- Commit to before and after data collection in support of the stated performance measures.
These requirements were implemented in the FY12-17 call for projects. No data are currently available for the projects selected for funding, as data are not received until projects have been completed. In future Transportation System Performance reports, the project-level data collection and performance measures will be documented in this section.

Programmed Projects

The projects listed in Table 7 have been selected by the NFRMPO Planning Council for FY1 2-17 funding. All projects listed have met CMP conformity based on the requirements documented in the 2010 NFRMPO Congestion Management Process. The parameters of the CMP as approved by the NFRMPO Planning Council are outlined in the 2035 Regional Transportation Plan Update.

Implemented Projects

Two important transportation improvement projects which affect the transportation system's performance were implemented within the NFRMPO in 2012.

- FLEX transit service expanded
- Transfort CNG Buses (Fort Collins)

Table 8 provides project information and performance measures for these projects.

Table 7. Programmed Projects for FY12-17

Project Title	Sponsor	Funding Awarded	Regionally Significant Corridor	CMP Strategy ${ }^{1}$	Advertisement or Notice to Proceed Date	Performance Measures
Tier One Corridor Projects						
Larimer CR 30 \& LCR 11	Larimer County	STP-Metro	I-25	Geometric improvements	Planned Ad Date: 5/1/2013	Capacity analysis - level of service
Larimer 17 (Shields): Vine to Willox	Larimer County	STP-Metro	US 287	Geometric improvements	Planned Ad Date: 1/1/2014	Accident data, level of service (vehicles, bikes, peds)
US 287 (College): Conifer to Willox	Fort Collins	STP-Metro Enhancement CMAQ	US 287	Access control	Planned Ad Date: 3/2015 Planned Ad Date: 3/2015 Planned Ad Date: 3/2015	Bicycle and Pedestrian Volumes, transit participation
Shields St \& Vine Dr (Ft Collins)	Fort Collins	STP-Metro	US 287	Geometric improvements	Planned Ad Date: 3/1/2015	Average Vehicle Delay
Poudre River Trailhead at Larimer 17	Larimer County	Enhancement	US 287	Bike/ped amenities	Planned Ad Date: 1/1/2014	Pedestrian and Bicycle Volumes
Transfort CNG Buses (Fort Collins)	Fort Collins	CMAQ	US 287 (and others)	Transit fleet	Planned Ad Date: 7/30/2012	Miles Traveled per Bus, Air Quality Performance Calculated
FLEX Operations (Year 3)	Loveland	CMAQ	US 287	Transit service expansion		Passengers/Hour
FLEX New Sunday Service	Loveland	CMAQ	US 287	Transit service expansion	Planned Ad Date: 6/2013	Passengers/Hour
$\begin{aligned} & \text { US } 34 \text { (10th St): } \\ & \text { 35th to 23rd (Greeley) } \end{aligned}$	Greeley	STP-Metro	US 34	Access Control	Planned Ad Date: 5/1/2013	Corridor Delay, Accidents Rates and Air Quality
Madison Tr at Greeley-Loveland Canal	Loveland	Enhancement	US 34	Bike/ped network	Planned Ad Date: 12/1/2012	Pedestrian and Bicycle Volumes, Number of Accidents
Greeley Fiber Optic Communications	Greeley	CMAQ	US 34 (and others)	Coordinated signal system	Planned Ad Date: 10/1/2012	Travel Time, Maintenance Call Outs, Weather Incident Response
FC Bikes Program	Fort Collins	CMAQ	US 287	Bike/ped Encouragement Program		Surveys, bicycle counts, questionnaires
US 287 (N College) Ped Bridge \& Path	Fort Collins	CMAQ	US 287	Bike/ped network	Planned Ad Date: 2014	Pedestrian and Bicycle Volumes
Timberline/Horsetooth (Fort Collins)	Fort Collins	CMAQ	I-25	Geometric improvements	Planned Ad Date: 11/1/2014	Delay Reduction Modeled from Peak Hour Traffic Counts
Loveland Fiber Optic Communications	Loveland	CMAQ	US 34 (and others)	Coordinated signal system	Planned Ad Date: 6/1/2012	Travel Time, Number of Accidents, Fuel Consumption

${ }^{1}$ The parameters of the CMP as approved by the NFRMPO Planning Council are outlined in the 2035 Regional Transportation Plan Update

Project Title	Sponsor	Funding Awarded	Regionally Significant Corridor	CMP Strategy ${ }^{\text {l }}$	Advertisement or Notice to Proceed Date	Performance Measures
Tier Two and Three Corridor Projects						
US 85 Access Cntrl at 37th St (Evans)	Evans	STP-Metro	US 85	Access control	Planned Ad Date: 2/2013	Average Vehicle Delay, Number of Accidents
US 85 Access Cntrl at 31st St (Evans)	Evans	STP-Metro	US 85	Access control	Planned Ad Date: 2/2015	Average Vehicle Delay, Number of Accidents
SH 14 (Mulbery St) Ped Br Reloc	Fort Collins	Enhancement	SH 14	Bike/ped network	Planned Ad Date: 6/2014	ADA Compliance access and Increase Trail User
Sheep Draw Tr: C St \& 59th (Greeley)	Greeley	Enhancement	Two Rivers Parkway	Bike/ped network	Planned Ad Date: 4/1/2014	Pedestrian and Bicycle Volumes
SH 392 \& WCR 23 e/o Windsor	Weld County	STP-Metro	SH 392	Geometric improvements	Planned Ad Date: 3/2013	Number of Accidents and the Severity of Accidents
SH 60 Milliken-Johnstown Trail	Milliken Johnstown	Enhancement	SH 60	Bike/ped network		Pedestrian and Bicycle Volumes
Non-Corridor Specific Projects						
Weld Natural Gas Equipment \& Vehicles	Weld County	CMAQ	N/A	Transit and other fleet	Planned Ad Date: 4/1/2012 ${ }^{2}$	Mobile Source Air Pollution Emissions
North Fort Collins Rail Rd Crossing Signals	Fort Collins	CMAQ	N/A	Coordinated signal system	Planned Ad Date: 6/1/2014	
Boyd Lake at GreeleyLoveland Canal	Loveland	Enhancement	N/A		Planned Ad Date: 6/1/2015	

${ }^{1}$ The parameters of the CMP as approved by the NFRMPO Planning Council are outlined in the 2035 Regional Transportation Plan Update
${ }^{2}$ New Advertisement date for each fiscal year. Date noted is for FY12.

Table 8. FY 2008-2013 TIP Project Closures

Project Titie	Sponsor	Funding Aworded		CMP Strategy ${ }^{1}$	
FLEX	Loveland	CMAQ		Transit service expansion	
Performance Measure Header					
Non Attainment Area:				Fort Collins	
CMAQ Category:				Transit	
Tailpipe Emission Area:				Fort Collins	
Performance Measure Header					
Projects Reducing Vehicle Miles Traveled:				Transit Service (New or Expanded)	
Description			Variable	Units	Value
Average daily ridership after project.			Rf	People	605
Average daily ridership before project.			Ri	People	378
Yearly population growth rate (Expressed as a decimal) for the surrounding community. For example: $2=20 \%$ growth, $-3=30 \%$ loss			GR	unitless	0.05
Average one-way trip distance travelled by single occupancy vehicles making the trip.			D	miles	9.94
Number of one-ways trips per day.			Nt	trips	605
Percent of users (expressed as a decimal) that formally commuted by signal occupant vehicle.			PSOV	unitless	0.9
Emission factor of transit vehicle (i.e., bus) relative to automobiles. For example: 3 = bus emits three times as much as automobiles			EF	unitless	3
Average daily transit vehicle (i.e., bus) miles traveled, including route mileage and mileage to and from garage.			DBMT	VMT	725
Number of benefit days per year.			Nd	days	308
Project Tite	Sponsor	Funding Awarded		CMP Stratiegy ${ }^{\text {l }}$	
Transfort CNG Buses (Fort Collins)	Fort Collins	CMAQ		Coordinated signal system	
Performance Measure Header					
Non Attainment Area:				Fort Collins	
CMAQ Category:				Transit	
Tailpipe Emission Area:				Fort Collins	
Performance Measure Header					
Direct Entry of AVMTR, CO, VOC, NOx and PM-10 Benefit:				Direct Entry	
Description			Variable	Units	Value
Annual Vehicle Miles Travelled Reduction. Vehicle Miles Travelled eliminated by the project during the year.			AVMTR	miles	117,156
Total kilograms of carbon monoxide eliminated by the project during the year.			CO	kg	1,873.55
Total kilograms of volatile organic commands eliminated by the project during the year.			VOC	kg	
Total kilograms of nitrogen Oxide eliminated by the project during the year.			Nox	kg	138.8
Total kilograms of Particulate matter with a diameter of 10 micrometers or less eliminated by the project during the year.			PM-10	kg	4.29

[^0]
EXTERNAL INFLUENCES

There are many factors that affect the way people travel in the North Front Range region. The following sections present historical trends in several factors that affect travel behavior and the ability of the region to address congestion. The NFRMPO has no influence over these external influences.

Gas Prices

The cost of travel plays a significant role in the behavior of the traveling public. When gas prices rise, people are much more willing to use alternative transportation modes such as transit, carpooling/vanpooling or bicycling/walking. Average gas prices in Colorado over the last four years are presented in Figure 25.

Figure 25. 4-Year Historical Gas Prices in Colorado

Source: GasBuddy.com

Population and Unemployment Rate

The population in Larimer and Weld Counties has steadily increased since 2001. Larimer County has experienced a 17 percent increase, while Weld County's population has increased by 34 percent. The Larimer County and Weld County population totals (including portions of the counties outside of the NFRMPO) over the last decade are presented in Figure 26. The annual population growth rate for Larimer County has been consistently between 1-2 percent since 2002, increasing a half of percent in 2012 over 2011. Weld County's annual growth rate has generally been decreasing since 2005.

Figure 26. Population Growth

Source: Colorado State Demographer
The unemployment rate in Colorado has more than doubled in the last five years. The unemployment rate in early 2008 was in the range of four percent; after the decline in the economy in late 2008, the unemployment rate quickly climbed to the eight and a half to nine percent range for most of 2009 and all of 2010. Starting in 2011, the unemployment rate has slowly been decreasing, with a sharper decrease occurring at the end of 2012. The unemployment rate as of January 2013 was 7.3 percent. Unemployment rates in Colorado over the last five years are presented in Figure 27.

Figure 27. Colorado Unemployment Rates (2008 - January 2013)

Source: Bureau of Labor Statistics

Transportation Funding and Gas Tax

The lack of adequate funding to address transportation needs is a concern not only in the NFRMPO, but throughout Colorado and the rest of the country. CDOT's total annual revenues over the time period from 2000 through 2013 are shown on Figure 28. According to the Colorado Department of Transportation Budget for Fiscal Year 2012-2013, the state of Colorado relies heavily on the motor fuel tax as the main source of transportation related revenue. In addition to the motor fuel tax, CDOT funding sources include motor vehicle registrations and other fees, the Funding Advancement for Surface Transportation and Economic Recovery (FASTER), the Colorado General Assembly General Fund, Gaming Funds, and Capital Construction Funds. In general, the CDOT Budget concludes that "transportation revenues have in the past decade demonstrated significant volatility due to fluctuations in receipt from these various revenue sources," and "have not kept pace with inflationary increases experienced by the construction sector of the economy which have averaged about 6\% per year over the past decade."

Figure 28. CDOT Annual Revenue

Source: CDOT Budget Allocation Summaries, 2000-2011, CDOT Budget for Fiscal Year 2011-12 and for 2012-13

The motor fuel tax is a significant portion of the statewide transportation budget, see Figure 29, representing approximately 40-50 percent of the overall budget. The motor fuel tax is a fixed per-gallon excise tax, meaning that the revenue collected depends on the number of gallons sold not on the sales price. The motor fuel tax does not include any factor which reflects inflation and therefore the gas tax has remained constant since the early 1990's when the gas tax was last increased. The chart depicted on Figure 30 shows that in Colorado, motor fuel taxes collected in 2008 were worth 33 percent less than in 1988, when accounting for inflation. Motor fuel taxes collected have sharply increased since 201 1, with FY2013 expected to be at the highest level during the reporting period of 2000-current.

Figure 29. CDOT Highway Users Tax Fund Revenue

Source: CDOT Budget Allocation Summaries, 2000-2011, CDOT Budget for Fiscal Year 2011-12
Figure 30. Percent Change in State Motor Fuel Taxes on Gasoline

Source: Gas tax rates down in most states over time, Remapping Debate, November 10, 2010 http://www.remappingdebate.org/map-data-tool/gas-tax-rates-down-most-states-over-time

Additionally, despite past increases in vehicle miles traveled, the increasing fuel efficiency of motor vehicles and alternatively fueled vehicles have led to an overall decline in the rate of growth of motor fuel tax collections. The recent spike in fuel prices has resulted in a national trend of decreased vehicle miles traveled and a trend for consumers to purchase even more fuel efficient vehicles. As a result, the motor fuel excise tax has become an even less reliable source for sustained transportation funding than in the past, despite its continued importance as a source of funding for CDOT and an increase in fuel tax revenues over the past few years.

Figure 31 provides a summary of the federal and state funding (including Regional Priorities Program, STP-Metro, CMAQ, Transportation Alternatives Program) that has been distributed to the NFRMPO member governments for transportation improvement projects through the MPO. The large spike in FYO7 was a result of Regional Priorities Program funding for the US 34 Business project through Greeley.

Figure 31. Federal and State Funding Distributed through NFRMPO to Member Governments

Source: NFRMPO Investment Flyers (total for all communities)

APPENDIX

Auto Occupancy (source: counts taken April 2011)

	Northbound/Eastbound (vehicles)											
	AM Peak (ppl/veh)				Noon Peak (ppl/veh)				PM Peak (ppl/veh)			
Location	1	2	3	4	1	2	3	4	1	2	3	4
1-25 s/o US 34	2063	209	31	18	1378	227	18	5	2197	206	25	18
1-25 s/o SH 1	1387	122	21	3	923	151	12	6	1477	145	15	3
US 287 s/o US 34	686	86	14	1	866	188	13	4	806	148	4	7
US 287 s/o SH 14	503	78	10	3	462	95	9	13	667	96	8	9
US 34 w/o l-25	1024	94	6	8	880	177	9	3	1390	111	5	10
US 34 e/o US 34 Bus	956	113	11	1	536	104	10	2	680	89	9	3

	Southbound/Westbound (vehicles)											
	AM Peak (ppl/veh)				Noon Peak (ppl/veh)				PM Peak (ppl/veh)			
Location	1	2	3	4	1	2	3	4	1	2	3	4
1-25 s/o US 34	2006	210	29	12	1464	263	17	8	2163	215	23	8
1-25 s/o SH 1	1365	119	7	3	878	224	7	6	1349	166	11	5
US 287 s/o US 34	829	109	11	2	742	131	8	1	875	131	20	3
US 287 s/o SH 14	649	119	6	1	698	139	18	9	720	152	16	1
US 34 w/o l-25	729	164	9	3	869	262	16	12	1376	280	12	2
US 34 e/o US 34 Bus	950	143	15	3	626	129	6	0	556	84	7	1

Historical Traffic Count Data (source: CDOT Database)

	2000	2001	2002	2003	2004	2005	2006	2007	2008	2009	2010	2011	2012	Notes
1-25 s/o US 34		62700	66048	61623	60776	67707	66672	67200	64300	64100	64000	68000	68000	combined NB and SB Average ATR Data
I-25 s/o SH 1	17640	20269	21457	22200	22916	22630	23492	24700	23600	24300	25000	26000	26000	combined NB and SB Average ATR Data
US 287 s/o US 34	17265	19624	17148	16081	14472	18834	15145	14900	15100	12800	13000	12000	16000	average of available daily count data
US 287 s/o SH 14	19664	21133	20000	16167	17160	21049	17625	18200	17800	15100	15000	19000	21000	average of available daily count data
US 34 e/o County Line Rd	27527	29676	32236	32983	33287	33261	34657	35700	35800	34900	36000	37000	37000	combined EB and WB Average ATR Data
US 34 w/o WCR 53	8574	9471	9317	10140	8700	10101	11389	8200	8900	8000	12000	11000	10000	average of available daily count data

I-25 ADT and Volume-Capacity (source: CDOT database)

Segment	I-25 Length	WCR 7 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
SH 66 to CR34	2.069	575	From North	2	4.138	16000	0.04	1190
CR 34 to SH 56	5.024	575	CDOT 2009	2	10.048	16000	0.04	2889
SH 56 to SH 60 E	2.02	575	From South	2	4.04	16000	0.04	1161
SH 60 E to SH 60 W	1.955	575	From South	2	3.91	16000	0.04	1124
SH 60 W to SH 402	1.056	575	From South	2	2.112	16000	0.04	607
SH 402 to US 34	2.033							
US 34 to CR 26 (Crossroads Blvd)	2.004							
CR 26 (Crossroads Blvd) to SH 392	2.989							
SH 392 to SH 68 (Harmony Rd)	3.016							
SH 68 (Harmony Rd) to Prospect Rd	3.161							
Prospect Rd to SH 14 (Mulberry St)	0.895							
SH 14 (Mulberry St) to Mountain Vista Dr	2.003							
Mountain Vista Dr to SH 1	6.511							

Segment	I-25 Length	LCR 9 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
SH 66 to CR34	2.069							
CR 34 to SH 56	5.024							
SH 56 to SH 60 E	2.02							
SH 60 E to SH 60 W	1.955							
SH 60 W to SH 402	1.056							
SH 402 to US 34	2.033	3260	CDOT 2009	2	4.066	16000	0.20	6628
US 34 to CR 26 (Crossroads Blvd)	2.004	5204	CDOT 2012	2	4.008	16000	0.33	10429
CR 26 (Crossroads Blvd) to SH 392	2.989	3676	CDOT 2012	2	5.978	16000	0.23	10988
SH 392 to SH 68 (Harmony Rd)	3.016							
SH 68 (Harmony Rd) to Prospect Rd	3.161							
Prospect Rd to SH 14 (Mulberry St)	0.895							
SH 14 (Mulberry St) to Mountain Vista Dr	2.003							
Mountain Vista Dr to SH 1	6.511							

Segment	1-25 Length	Timberline Rd ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
SH 66 to CR34	2.069							
CR 34 to SH 56	5.024							
SH 56 to SH 60 E	2.02							
SH 60 E to SH 60 W	1.955							
SH 60 W to SH 402	1.056							
SH 402 to US 34	2.033							
US 34 to CR 26 (Crossroads Blvd)	2.004							
CR 26 (Crossroads Blvd) to SH 392	2.989	6364	CDOT 2012	2	5.978	16000	0.40	19022
SH 392 to SH 68 (Harmony Rd)	3.016	16800	CDOT 2009	4	12.064	32000	0.53	50669
SH 68 (Harmony Rd) to Prospect Rd	3.161	27340	CDOT 2012	4	12.644	32000	0.85	86422
Prospect Rd to SH 14 (Mulberry St)	0.895	7190	From North	2	1.79	16000	0.45	6435
SH 14 (Mulberry St) to Mountain Vista Dr	2.003	7190	CDOT 2009	2	4.006	16000	0.45	14402
Mountain Vista Dr to SH 1	6.511							

Segment	I-25 Length	I-25 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
SH 66 to CR34	2.069	76000	CDOT 2012	4	8.276	90000	0.84	157244
CR 34 to SH 56	5.024	69000	CDOT 2012	4	20.096	90000	0.77	346656
SH 56 to SH 60 E	2.02	66000	CDOT 2012	4	8.08	90000	0.73	133320
SH 60 E to SH 60 W	1.955	72000	CDOT 2012	4	7.82	90000	0.80	140760
SH 60 W to SH 402	1.056	70000	CDOT 2012	4	4.224	90000	0.78	73920
SH 402 to US 34	2.033	68000	CDOT 2012	4	8.132	90000	0.76	138244
US 34 to CR 26 (Crossroads Blvd)	2.004	64000	CDOT 2012	4	8.016	90000	0.71	128256
CR 26 (Crossroads Blvd) to SH 392	2.989	68000	CDOT 2012	4	11.956	90000	0.76	203252
SH 392 to SH 68 (Harmony Rd)	3.016	62000	CDOT 2012	4	12.064	90000	0.69	186992
SH 68 (Harmony Rd) to Prospect Rd	3.161	45000	CDOT 2012	4	12.644	90000	0.50	142245
Prospect Rd to SH 14 (Mulberry St)	0.895	43000	CDOT 2012	4	3.58	90000	0.48	38485
SH 14 (Mulberry St) to Mountain Vista Dr	2.003	31000	CDOT 2012	4	8.012	90000	0.34	62093
Mountain Vista Dr to SH 1	6.511	26000	CDOT 2012	4	26.044	90000	0.29	169286

Segment	I-25 Length	LCR 5 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
SH 66 to CR34	2.069							
CR 34 to SH 56	5.024							
SH 56 to SH 60 E	2.02							
SH 60 E to SH 60 W	1.955							
SH 60 W to SH 402	1.056							
SH 402 to US 34	2.033							
US 34 to CR 26 (Crossroads Blvd)	2.004	3950	CDOT 2012	2	4.008	16000	0.25	7916
CR 26 (Crossroads Blvd) to SH 392	2.989	3950	CDOT 2012	2	5.978	16000	0.25	11807
SH 392 to SH 68 (Harmony Rd)	3.016	4120	CDOT 2009	2	6.032	16000	0.26	12426
SH 68 (Harmony Rd) to Prospect Rd	3.161	2788	CDOT 2008	2	6.322	16000	0.17	8813
Prospect Rd to SH 14 (Mulberry St)	0.895	1490	CDOT 2006	2	1.79	16000	0.09	1334
SH 14 (Mulberry St) to Mountain Vista Dr	2.003							
Mountain Vista Dr to SH 1	6.511							

Segment	I-25 Length	WCR 13 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
SH 66 to CR34	2.069	1900	From North	2	4.138	16000	0.12	3931
CR 34 to SH 56	5.024	1900	CDOT 2009	2	10.048	16000	0.12	9546
SH 56 to SH 60 E	2.02	1950	CDOT 2008	2	4.04	16000	0.12	3939
SH 60 E to SH 60 W	1.955	1950	From South	2	3.91	16000	0.12	3812
SH 60 W to SH 402	1.056	1950	From South	2	2.112	16000	0.12	2059
SH 402 to US 34	2.033	1950	From South	2	4.066	16000	0.12	3964
US 34 to CR 26 (Crossroads Blvd)	2.004	4050	From North	2	4.008	16000	0.25	8116
CR 26 (Crossroads Blvd) to SH 392	2.989	4050	CDOT 2005	2	5.978	16000	0.25	12105
SH 392 to SH 68 (Harmony Rd)	3.016	4050	From South	2	6.032	16000	0.25	12215
SH 68 (Harmony Rd) to Prospect Rd	3.161	4050	From South	2	6.322	16000	0.25	12802
Prospect Rd to SH 14 (Mulberry St)	0.895	4050	From South	2	1.79	16000	0.25	3625
SH 14 (Mulberry St) to Mountain Vista Dr	2.003							
Mountain Vista Dr to SH 1	6.511							

US 287 ADT and Volume-Capacity (source: CDOT database)

Segment	US 287 Length	LCR 19 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT	US 287 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
SH 66 to SH 60	4.661								20000	CDOT 2012	4	18.644	32000	0.63	93220
SH 60 to SH 402	2.005								16500	CDOT 2012	4	8.02	32000	0.52	33083
SH 402 to US 287 Split	0.585								19000	CDOT 2012	4	2.34	32000	0.59	11115
US 287 Split to 1st St	0.425								10000	CDOT 2012	4	1.7	32000	0.31	4250
1st St to 4th St	0.262								12000	CDOT 2012	4	1.048	32000	0.38	3144
4th St to 6th St	0.146								10000	CDOT 2012	4	0.584	32000	0.31	1460
6th St to 7th St	0.261								15000	CDOT 2012	4	1.044	32000	0.47	3915
7th St to US 34	0.346								16000	CDOT 2012	4	1.384	32000	0.50	5536
US 34 to 287 Split	0.259	19303	CDOT 2008	4	1.036	32000	0.60	4999	16000	CDOT 2012	4	1.036	32000	0.50	4144
287 Split to Buchannan Ave Split	0.329	19303	From South	4	1.316	32000	0.60	6351	15000	CDOT 2012	4	1.316	32000	0.47	4935
Buchannan Ave Split to 29th St	0.472	16629	CDOT 2012	4	1.888	32000	0.52	7849	23000	CDOT 2012	4	1.888	32000	0.72	10856
29th St to Garfield Ave	0.114	13617	CDOT 2012	4	0.456	32000	0.43	1552	27000	CDOT 2012	4	0.456	32000	0.84	3078
Garfield Ave to 37th St	0.523	13617	CDOT 2012	4	2.092	32000	0.43	7122	28000	CDOT 2012	4	2.092	32000	0.88	14644
37th St to 57th St	1.397	13617	CDOT 2012	4	5.588	32000	0.43	19023	26000	CDOT 2012	4	5.588	32000	0.81	36322
57th St to SH 392	1.981	7920	From South	2	3.962	16000	0.50	15690	26000	CDOT 2012	4	7.924	32000	0.81	51506
SH 392 to Trilby Rd	1.053	13617	From South	2	2.106	16000	0.85	14339	26000	CDOT 2012	4	4.212	32000	0.81	27378
Trilby Rd to Fossil Creek Pkwy	1.361	13617	From South	2	2.722	16000	0.85	18533	29000	CDOT 2012	4	5.444	32000	0.91	39469
Fossil Creek Pkwy to SH 68 (Harmony Rd)	0.625	11660	CDOT 2009	2	1.25	16000	0.73	7288	32000	CDOT 2012	4	2.5	32000	1.00	20000
SH 68 (Harmony Rd) to Boardwalk Dr	0.642	19350	CDOT 2008	2	1.284	16000	1.21	12423	33000	CDOT 2012	6	3.852	48000	0.69	21186
Boardwalk Dr to Horsetooth Rd	0.378	19350	From South	2	0.756	16000	1.21	7314	37000	CDOT 2012	6	2.268	48000	0.77	13986
Horsetooth Dr to Drake Rd	1.007	19350	From South	4	4.028	32000	0.60	19485	36000	CDOT 2012	6	6.042	48000	0.75	36252
Drake Rd to Prospect Rd	1.018	20950	CDOT 2008	4	4.072	32000	0.65	21327	38000	CDOT 2012	6	6.108	48000	0.79	38684
Prospect Rd to Elizabeth St	0.505	21350	CDOT 2008	4	2.02	32000	0.67	10782	32000	CDOT 2012	6	3.03	48000	0.67	16160
Elizabeth St to Laurel St	0.265	15660	From North	4	1.06	32000	0.49	4150	32000	CDOT 2012	6	1.59	48000	0.67	8480
Laurel St to Mulberry St	0.236	15660	CDOT 2008	4	0.944	32000	0.49	3696	27000	CDOT 2012	4	0.944	32000	0.84	6372
Mulberry St to Mountain Ave	0.392	9740	CDOT 2008	4	1.568	32000	0.30	3818	22000	CDOT 2012	4	1.568	32000	0.69	8624
Mountain Ave to LaPorte Ave	0.136	9740	From South	4	0.544	32000	0.30	1325	19000	CDOT 2012	4	0.544	32000	0.59	2584
LaPorte Ave to SH 14 (Jefferson Ave)	0.128	7000	CDOT 2009	2	0.256	16000	0.44	896	21000	CDOT 2012	4	0.512	32000	0.66	2688
SH 14 (Jefferson Ave) to Vine Dr	0.376	7000	From South	2	0.752	16000	0.44	2632	28000	CDOT 2012	4	1.504	32000	0.88	10528
Vine Dr to Conifer St	0.47	7000	From South	2	0.94	16000	0.44	3290	25000	CDOT 2012	4	1.88	32000	0.78	11750
Conifer St to Willox Ln	0.54	7000	From South	2	1.08	16000	0.44	3780	20000	CDOT 2012	4	2.16	32000	0.63	10800
Willox Ln to SH 1	0.375	7000	From South	2	0.75	16000	0.44	2625	21000	CDOT 2012	4	1.5	32000	0.66	7875
SH 1 to CR 17	1.04	7000	From South	2	2.08	16000	0.44	7280	12000	CDOT 2012	2	2.08	16000	0.75	12480
CR 17 to CR 54G Junction	0.679	7000	From South	2	1.358	16000	0.44	4753	14000	CDOT 2012	2	1.358	16000	0.88	9506
CR 54 G Junction to CR 21	1.999								6200	CDOT 2012	2	3.998	16000	0.39	12394
CR 21 to CR 54G Junction	2.642								6500	CDOT 2012	2	5.284	16000	0.41	17173
CR 54G Junction to SH 14	0.861								6500	CDOT 2012	2	1.722	16000	0.41	5596

Segment	US 287 Length	LCR 17 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
SH 66 to SH 60	4.661	3313	CDOT 2012	2	9.322	16000	0.21	15442
SH 60 to SH 402	2.005	3313	From South	4	8.02	32000	0.10	6643
SH 402 to US 287 Split	0.585	19680	From North	4	2.34	32000	0.62	11513
US 287 Split to 1st St	0.425	17861	CDOT 2012	4	1.7	32000	0.56	7591
1st St to 4th St	0.262	19680	CDOT 2009	4	1.048	32000	0.62	5156
4th St to 6th St	0.146	20596	CDOT 2012	4	0.584	32000	0.64	3007
6th St to 7th St	0.261	20596	CDOT 2012	4	1.044	32000	0.64	5376
7 th St to US 34	0.346	20596	CDOT 2012	4	1.384	32000	0.64	7126
US 34 to 287 Split	0.259	4080	CDOT 2009	4	1.036	32000	0.13	1057
287 Split to Buchannan Ave Split	0.329	13196	CDOT 2012	4	1.316	32000	0.41	4341
Buchannan Ave Split to 29th St	0.472	13196	CDOT 2012	4	1.888	32000	0.41	6229
29th St to Garfield Ave	0.114	13196	CDOT 2012	4	0.456	32000	0.41	1504
Garfield Ave to 37th St	0.523	13196	CDOT 2012	4	2.092	32000	0.41	6902
37th St to 57th St	1.397	13196	CDOT 2012	4	5.588	32000	0.41	18435
57th St to SH 392	1.981	12890	From North	2	3.962	16000	0.81	25535
SH 392 to Trilby Rd	1.053	12890	CDOT 2009	2	2.106	16000	0.81	13573
Trilby Rd to Fossil Creek Pkwy	1.361	12890	From South	2	2.722	16000	0.81	17543
Fossil Creek Pkwy to SH 68 (Harmony Rd)	0.625	12890	From South	2	1.25	16000	0.81	8056
SH 68 (Harmony Rd) to Boardwalk Dr	0.642	22789	CDOT 2012	4	2.568	32000	0.71	14631
Boardwalk Dr to Horsetooth Rd	0.378	22789	CDOT 2012	4	1.512	32000	0.71	8614
Horsetooth Dr to Drake Rd	1.007	22789	CDOT 2012	4	4.028	32000	0.71	22949
Drake Rd to Prospect Rd	1.018	30290	CDOT 2008	4	4.072	32000	0.95	30835
Prospect Rd to Elizabeth St	0.505	24050	CDOT 2008	4	2.02	32000	0.75	12145
Elizabeth St to Laurel St	0.265	19500	From North	4	1.06	32000	0.61	5168
Laurel St to Mulberry St	0.236	19500	CDOT 2008	4	0.944	32000	0.61	4602
Mulberry St to Mountain Ave	0.392	14080	CDOT 2009	4	1.568	32000	0.44	5519
Mountain Ave to LaPorte Ave	0.136	14080	From South	4	0.544	32000	0.44	1915
LaPorte Ave to SH 14 (Jefferson Ave)	0.128	7750	From North	2	0.256	16000	0.48	992
SH 14 (Jefferson Ave) to Vine Dr	0.376	7750	From North	2	0.752	16000	0.48	2914
Vine Dr to Conifer St	0.47	7750	From North	2	0.94	16000	0.48	3643
Conifer St to Willox Ln	0.54	7750	CDOT 2008	2	1.08	16000	0.48	4185
Willox Ln to SH 1	0.375	7750	From South	2	0.75	16000	0.48	2906
SH 1 to CR 17	1.04	4708	CDOT 2012	2	2.08	16000	0.29	4896
CR 17 to CR 54G Junction	0.679							
CR 54 G Junction to CR 21	1.999							
CR 21 to CR 54G Junction	2.642							
CR 54G Junction to SH 14	0.861							

US 34 ADT and Volume-Capacity (source: CDOT database)

Segment	US 34 Length	$\begin{gathered} \hline \text { Crossroads/O } \\ \text { St ADT } \\ \hline \end{gathered}$	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
Wilson Ave to Taft Ave	0.332							
Taft Ave to Colorado Ave	0.381							
Colorado Ave to Garfield Ave	1.104							
Garfield Ave to SH 287 (Cleveland Ave)	0.163							
SH 287 (Cleveland Ave) to SH 287 (Lincoln Ave)	0.085							
SH 287 (Lincoln Ave) to Madison Ave	0.754							
Madison Ave to Boise Ave	0.296							
Boise Ave to CR 9	1.749							
CR 9 to I-25	1.219							
$\mathrm{l}-25$ to Centerra Pkwy	0.223	10729	CDOT 2012	2	0.446	16000	0.67	2393
Centerra Pkwy to Countyline Rd	2.586	10729	CDOT 2012	2	5.172	16000	0.67	27745
County Line Rd to US 34 Business	3.64	10729	CDOT 2012	2	7.28	16000	0.67	39054
US 34 Business to SH 257	0.328	7196	CDOT 2012	2	0.656	16000	0.45	2360
SH 257 to 95th Ave	1.972	5520	CDOT 2008	2	3.944	16000	0.35	10885
95th Ave to 71st Ave	2.324	2070	CDOT 2010	2	4.648	16000	0.13	4811
71st Ave to 65th Ave	0.512	2450	CDOT 2009	2	1.024	16000	0.15	1254
65th Ave to 47th Ave	1.5	2450	From West	2	3	16000	0.15	3675
47th Ave to 35th Ave	1.122	5079	From East	2	2.244	16000	0.32	5699
35th Ave to 23rd Ave	0.999	5079	CDOT 2012	2	1.998	16000	0.32	5074
23rd Ave to 11th Ave	1	5079	From West	2	2	16000	0.32	5079
11th Ave to US 85 S	0.473	1260	CDOT 2009	2	0.946	16000	0.08	596
US 85 S to US 85 N	0.43							
US 85 N to CR 45	2.069							
CR 45 to US 34 Business	0.206							

| Segment | US 34 Length | US 34 Bus
 ADT | Notes | No. Lanes | Ln Miles | Capacity | V/C |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | VMT \mid

Segment	US 34 Length	US 34 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C	VMT
Wilson Ave to Taft Ave	0.332	22000	CDOT 2012	4	1.328	60000	0.37	7304
Taft Ave to Colorado Ave	0.381	27000	CDOT 2012	4	1.524	60000	0.45	10287
Colorado Ave to Garfield Ave	1.104	28000	CDOT 2012	4	4.416	60000	0.47	30912
Garfield Ave to SH 287 (Cleveland Ave)	0.163	27000	CDOT 2012	4	0.652	60000	0.45	4401
SH 287 (Cleveland Ave) to SH 287 (Lincoln Ave)	0.085	34000	CDOT 2012	6	0.51	90000	0.38	2890
SH 287 (Lincoln Ave) to Madison Ave	0.754	33000	CDOT 2012	6	4.524	90000	0.37	24882
Madison Ave to Boise Ave	0.296	39000	CDOT 2012	6	1.776	90000	0.43	11544
Boise Ave to CR 9	1.749	41000	CDOT 2012	6	10.494	90000	0.46	71709
CR 9 to I-25	1.219	40000	CDOT 2012	4	4.876	60000	0.67	48760
I-25 to Centerra Pkwy	0.223	45000	CDOT 2012	4	0.892	60000	0.75	10035
Centerra Pkwy to Countyline Rd	2.586	39000	CDOT 2012	4	10.344	60000	0.65	100854
County Line Rd to US 34 Business	3.64	37000	CDOT 2012	4	14.56	60000	0.62	134680
US 34 Business to SH 257	0.328	27000	CDOT 2012	4	1.312	60000	0.45	8856
SH 257 to 95th Ave	1.972	23000	CDOT 2012	4	7.888	60000	0.38	45356
95th Ave to 71st Ave	2.324	29000	CDOT 2012	4	9.296	60000	0.48	67396
71st Ave to 65th Ave	0.512	29000	CDOT 2012	4	2.048	60000	0.48	14848
65th Ave to 47th Ave	1.5	32000	CDOT 2012	4	6	60000	0.53	48000
47th Ave to 35th Ave	1.122	30000	CDOT 2012	4	4.488	60000	0.50	33660
35th Ave to 23rd Ave	0.999	36000	CDOT 2012	4	3.996	60000	0.60	35964
23rd Ave to 11th Ave	1	35000	CDOT 2012	4	4	60000	0.58	35000
11th Ave to US 85 S	0.473	31000	CDOT 2012	4	1.892	60000	0.52	14663
US 85 S to US 85 N	0.43	33000	CDOT 2012	4	1.72	60000	0.55	14190
US 85 N to CR 45	2.069	13000	CDOT 2012	4	8.276	60000	0.22	26897
CR 45 to US 34 Business	0.206	12000	CDOT 2012	4	0.824	60000	0.20	2472

Segment	US 34 Length	SH 402/	CR 54 ADT	Notes	No. Lanes	Ln Miles	Capacity	V/C
VMT								
Wilson Ave to Taft Ave	0.332							
Taft Ave to Colorado Ave	0.381	14000	From East	4	1.524	32000	0.44	5334
Colorado Ave to Garfield Ave	1.104	14000	From East	4	4.416	32000	0.44	15456
Garfield Ave to SH 287 (Cleveland Ave)	0.163	14000	From East	4	0.652	32000	0.44	2282
SH 287 (Cleveland Ave) to SH 287 (Lincoln Ave)	0.085	14000	CDOT 2009	4	0.34	32000	0.44	1190
SH 287 (Lincoln Ave) to Madison Ave	0.754	16000	CDOT 2012	2	1.508	16000	1.00	12064
Madison Ave to Boise Ave	0.296	16000	From West	2	0.592	16000	1.00	4736
Boise Ave to CR 9	1.749	16000	From West	2	3.498	16000	1.00	27984
CR 9 to I-25	1.219	12000	CDOT 2012	2	2.438	16000	0.75	14628
I-25 to Centerra Pkwy	0.223	7200	CDOT 2008	2	0.446	16000	0.45	1606
Centerra Pkwy to Countyline Rd	2.586	7200	CDOT 2008	2	5.172	16000	0.45	18619
County Line Rd to US 34 Business	3.64	3730	CDOT 2008	2	7.28	16000	0.23	13577
US 34 Business to SH 257	0.328	3586	CDOT 2012	2	0.656	16000	0.22	1176
SH 257 to 95th Ave	1.972	3586	From West	2	3.944	16000	0.22	7072
95th Ave to 71st Ave	2.324	8470	From East	2	4.648	16000	0.53	19684
71st Ave to 65th Ave	0.512	8470	From East	2	1.024	16000	0.53	4337
65th Ave to 47th Ave	1.5	8470	CDOT 2008	2	3	16000	0.53	12705
47th Ave to 35th Ave	1.122	10090	CDOT 2009	2	2.244	16000	0.63	11321
35th Ave to 23rd Ave	0.999	4910	CDOT 2008	4	3.996	32000	0.15	4905
23rd Ave to 11th Ave	1	14470	From East	4	4	32000	0.45	14470
11th Ave to US 85 S	0.473	14470	CDOT 2007	4	1.892	32000	0.45	6844
US 85 Sto US 85 N	0.43							
US 85 N to CR 45	2.069							
CR 45 to US 34 Business								

I-25 Corridor (source: travel time runs completed January-February 2013)

2013	Average Travel Time (sec)						Average		
	I-25 NB			I-25 SB			I-25		
Segment	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
SH 66 to SH 56	351.25	350	359.25	358.25	350	355.25	354.75	350.00	357.25
SH 56 to SH 60 E	101.25	103	105.25	101.75	99.5	99.25	101.50	101.25	102.25
SH 60 E to SH 60 W	98.75	99	97.75	97.75	98.5	99.75	98.25	98.75	98.75
SH 60 W to SH 402	54.75	53.5	55.25	53.75	59	55.25	54.25	56.25	55.25
SH 402 to US 34	100.5	99.5	104.75	100	98.5	99.5	100.25	99.00	102.13
US 34 to Crossroads	101.25	103.5	104.75	98.75	95.5	101.75	100.00	99.50	103.25
Crossroads to SH 392	146.25	149	150.75	153.25	153	154.75	149.75	151.00	152.75
SH 392 to Harmony	151	147.5	148.25	149.5	148.5	155.25	150.25	148.00	151.75
Harmony to Prospect	150.5	148	152.25	146.25	146.5	154.5	148.38	147.25	153.38
Prospect to Mulberry	49.25	51.5	49.25	50	49	51.25	49.63	50.25	50.25
Mulberry to Wellington	417.25	419.5	421.5	406.5	410.5	417.75	411.88	415.00	419.63
Total (converted to min)	28.70	28.73	29.15	28.60	28.48	29.07	28.65	28.60	29.11

US 287 Corridor (source: travel time runs completed January-March 2013)

2013	Average Travel Time (sec)						Average		
	US 287 NB			US 287 SB			US 287		
Segment	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
SH 66 to CR 2	239.25	244	237.25	268.75	291.5	259.75	254.00	267.75	248.50
CR 2 to SH 56	185	173.5	175.75	175.5	176.5	179.75	180.25	175.00	177.75
SH 56 to CR 17	155.5	139.5	149.75	170.5	163	170	163.00	151.25	159.88
CR 17 to 42nd	125.5	129.5	126.25	145.25	141.5	137.25	135.38	135.50	131.75
42nd to 14th	148.25	141	173.5	138.75	139	140	143.50	140.00	156.75
14th to 1st	117.25	111.5	133.5	136.25	96	118.75	126.75	103.75	126.13
1 st to US 34	161	191	201	138	169.5	151.5	149.50	180.25	176.25
US 34 to 29th	121.25	134.5	137.5	145.5	170.5	166.25	133.38	152.50	151.88
29th to 57th	166	199.5	186.75	173.5	206.5	188.25	169.75	203.00	187.50
57th to Carpenter	163.25	150	190	142.25	168.5	175	152.75	159.25	182.50
Carpenter to Trilby	104.25	74.5	77	66.25	77	87	85.25	75.75	82.00
Trilby to Harmony	183.75	189.5	229.75	195.5	146.5	138.5	189.63	168.00	184.13
Harmony to Horsetooth	98.25	103.5	100.75	121	129	160.75	109.63	116.25	130.75
Horsetooth to Drake	112.75	105	159	102.75	119.5	142.25	107.75	112.25	150.63
Drake to Prospect	143	165.5	128	140.5	149.5	250.25	141.75	157.50	189.13
Prospect to Elizabeth	54.25	56	56.25	72.75	88.5	71	63.50	72.25	63.63
Elizabeth to Mulberry	53.5	105.5	108.5	58	61.5	80.75	55.75	83.50	94.63
Mulberry to LaPorte	104	154	133.25	146.5	129.5	178.5	125.25	141.75	155.88
LaPorte to Cherry	42.75	68	59.75	64.75	41.5	64.25	53.75	54.75	62.00
Cherry to Vine	33.5	38.5	34.5	35.25	53	35.25	34.38	45.75	34.88
Vine to Willox	96.25	97	139	94.5	98	98.5	95.38	97.50	118.75
Willox to Highway 1	41.5	33	35.75	37.25	57	51.75	39.38	45.00	43.75
Highway 1 to CR 54G	143.25	156.5	156.5	193.75	159	172.25	168.50	157.75	164.38
CR 54G to Highway 14	358.5	348.5	349.25	351	362.5	356.75	354.75	355.50	353.00
Total (converted to min)	52.53	55.15	57.98	55.23	56.58	59.57	53.88	55.86	58.77

US 34 Corridor (source: travel time runs completed January-February 2013)

2013	Average Travel Time (sec)						Average		
	US 34 EB			US 34 WB			US 34		
Segment	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
Wilson to Taft	92.25	102	75.5	97.25	74	120.25	94.75	88.00	97.88
Taft to US 287 S	159.5	137.5	150.75	148.5	200.5	126.25	154.00	169.00	138.50
US 287 S to US 287 N	9.5	9.5	14.25	8.5	10	17.75	9.00	9.75	16.00
US 287 N to Madison	91.75	101	112.5	102.25	101	195.75	97.00	101.00	154.13
Madison to Denver	81.5	78	82.25	94.25	131.5	138.75	87.88	104.75	110.50
Denver to CR 9	90.25	94	93.75	112.25	130.5	111.25	101.25	112.25	102.50
CR 9 to CR 7	73	69	82.5	75.25	72.5	110	74.13	70.75	96.25
CR 7 to I-25	35.5	33	50	66	72	96	50.75	52.50	73.00
I-25 to CR 17	162	160.5	220.75	165.5	189	238.5	163.75	174.75	229.63
CR 17 to CR 12	122.5	118.5	129.25	114.25	113	120.75	118.38	115.75	125.00
CR 12 to 34 Bus	69.75	69	71.25	78.75	71	94.5	74.25	70.00	82.88
34 Bus to SH 257	46.25	45.5	45.5	46	45	36.75	46.13	45.25	41.13
SH 257 to 83rd	178.5	179.5	176.25	175	178.5	168	176.75	179.00	172.13
83rd to 65th	114.75	135.5	131.25	109.25	104.5	114.5	112.00	120.00	122.88
65th to 47th	127	118.5	135.75	116	111	109.5	121.50	114.75	122.63
47th to 35th	93.25	86.5	117.75	79	83	147	86.13	84.75	132.38
35th to 17th	77.5	70.5	79	181.75	159.5	207.25	129.63	115.00	143.13
17th to 11th	41	38	48.25	42.25	43	45.75	41.63	40.50	47.00
11th to US 85	87.5	102.5	77.25	97	77	158.5	92.25	89.75	117.88
Total (converted to min)	29.22	29.14	31.56	31.82	32.78	39.28	30.52	30.96	35.42

US 34 Business Corridor (source: travel time runs completed January-February 2013)

2013	Average Travel Time (sec)						Average		
	US 34 Business EB			US 34 Business WB			US 34 Business		
Segment	AM	Noon	PM	AM	Noon	PM	AM	Noon	PM
US 34 to 257	55	58.5	54.25	58.25	52.5	51.75	56.63	55.50	53.00
257 to Promontory	46.5	62	47.5	39	44.5	47.25	42.75	53.25	47.38
Promontory to 83rd	133.25	143	133	136.5	142.5	146.25	134.88	142.75	139.63
83rd to 71st	61.75	60.5	88	65	70.5	72	63.38	65.50	80.00
71st to 69th	28	16	21.25	20.75	17	49	24.38	16.50	35.13
69th to Fire Station	11.75	10.5	10.5	10.5	11	12	11.13	10.75	11.25
Fire Station to 59th	69	67	62.25	44.5	49	46	56.75	58.00	54.13
59th to 54th	19.75	20	26.75	17.5	28	20	18.63	24.00	23.38
54th to 47th	58.75	71	75.5	65.75	60	61	62.25	65.50	68.25
47th to Walmart	24.25	20.5	24	46	22	21.75	35.13	21.25	22.88
Walmart to 43rd	15	18	22.25	36.75	27	16	25.88	22.50	19.13
43rd to 39th	16.5	39	30.75	17.5	27.5	18.5	17.00	33.25	24.63
39th to 37th	30.75	26.5	32.25	25.25	28.5	39.5	28.00	27.50	35.88
37th to 35th	66.75	53.5	46.5	33.5	42.5	41.5	50.13	48.00	44.00
35 th to 28th	55.75	68	67.5	69.75	56.5	104.75	62.75	62.25	86.13
28th to 24th	27.25	17	18.25	35	17.5	28.5	31.13	17.25	23.38
24th to 23rd	44.5	120.5	49	39.75	39	49	42.13	79.75	49.00
23rd to 14th	96	103.5	82.5	103.25	107.5	97	99.63	105.50	89.75
14th to 11th	57.75	42.5	43.75	37.75	57	46.5	47.75	49.75	45.13
11th to 10th	41.75	41.5	34.25	26.25	27	33	34.00	34.25	33.63
10th to 9th	36.25	17.5	48.75	55.5	51	43.5	45.88	34.25	46.13
9th to US 85	22.5	43	44.5	33	42	37.25	27.75	42.50	40.88
Total (converted to min)	15.30	16.96	15.60	15.04	15.00	16.14	15.17	15.98	15.87

Average Peak Period Travel Time (2011)

(source: travel time runs completed March-May 2011)

2011	Average (in minutes)			
Segment	AM Peak	Noon Peak	PM Peak	
I-25 (SH 66 to SH 1) US 287 (SH 66 to SH 14) US 34 (Wilson Ave to US 85) US 34 Business (US 34 to US 85) 27.93	27.99	28.28		

Average Peak Period Travel Time (2012)

(source: travel time runs completed January-February 2012)

2012	Average (in minutes)			
Segment	AM Peak	Noon Peak	PM Peak	
I-25 (SH 66 to SH 1) US 287	29.42	28.59	29.12	
(SH 66 to SH 14)	52.86	57.30	59.00	
US 34 (Wilson Ave to US 85) US 34 Business (US 34 to US 85)	30.11	31.50	33.60	

Average Peak Period Travel Time (2013)

(source: travel time runs completed January-March 2013)

2013	Average (in minutes)		
Segment	AM Peak	Noon Peak	PM Peak
$\begin{aligned} & \hline \mathrm{I}-25 \\ & \text { (SH } 66 \text { to } \mathrm{SH} 1 \text {) } \end{aligned}$	28.65	28.60	29.11
$\begin{aligned} & \text { US } 287 \\ & \text { (SH } 66 \text { to SH 14) } \end{aligned}$	53.88	55.86	58.77
US 34 (Wilson Ave to US 85)	30.52	30.96	35.42
US 34 Business (US 34 to US 85)	15.17	15.98	15.87

I-25 Corridor Average Peak Period Travel Time
(2011-2013)

I-25	Average (in minutes)		
Year	AM Peak	Noon Peak	PM Peak
2011	27.93	27.99	28.28
2012	29.42	28.59	29.12
2013	28.65	28.60	29.11

US 287 Corridor Average Peak Period Travel Time
(2011-2013)

US 287	Average (in minutes)		
Year	AM Peak	Noon Peak	PM Peak
2011	52.09	56.03	59.07
2012	52.86	57.30	59.00
2013	53.88	55.86	58.77

US 34 Corridor Average Peak Period Travel Time
(2011-2013)

US 34	Average (in minutes)		
Year	AM Peak	Noon Peak	PM Peak
2011	29.65	30.20	32.76
2012	30.11	31.50	33.60
2013	30.52	30.96	35.42

US 34 Business Corridor Average Peak Period Travel Time (2011-2013)

US 34 Business	Average (in minutes)		
Year	AM Peak	Noon Peak	PM Peak
2011	16.63	17.55	17.48
2012	15.11	15.83	16.63
2013	15.17	15.98	15.87

Intersection Delay (source: travel time runs completed March-May 2011)

2011								
Corridor		Northbound/Eastbound Runs	NB/EB Average	Southbound/Westbound Runs	SB/WB Average			
I-25	0	0	0	0.00	0	0	0	
US 287	219	380	393	5.51	302	361	642	7.25
US 34	169	166	243	3.21	175	191	304	0
US 34 Business	109	128	119	1.98	137	143	148	

Intersection Delay (source: travel time runs completed January-February 2012)

2012								
Corridor		Northbound/Eastbound Runs	NB/EB Average	Southbound/Westbound Runs	SB/WB Average			
I-25	0	0	0	0.00	0	0	0.00	
US 287	188	304	372	4.80	361	496	606	8.13
US 34	131	143	265	2.99	203	298	331	4.62
US 34 Business	159	170	148	2.65	136	206	229	

Intersection Delay (source: travel time runs completed January-March 2013)

2013								
Corridor	Northbound/Eastbound Runs	NB/EB Average	Southbound/Westbound Runs	SB/WB Average				
$1-25$	0	0	0	0.00	0	0	0	
US 287	286	342	472	6.11	381	371	545	7.21
US 34	131	138	239	2.82	222	275	516	5.63
US 34 Business	161	239	196	3.31	149	131	178	

I-25 Corridor Intersection Delay (2011-2013)

Year	Northbound/Eastbound Runs		NB/EB Average	Southbound/Westbound Runs		SB/WB Average		
2011	0	0	0	0.00	0	0	0	0.00
2012	0	0	0	0.00	0	0	0	0.00
2013	0	0	0	0.00	0	0	0	0.00

US 287 Corridor Intersection Delay (2011-2013)

Year	Northbound/Eastbound Runs		NB/EB Average		Southbound/Westbound Runs		SB/WB Average	
2011	219	380	393	5.51	302	361	642	7.25
2012	188	304	372	4.80	361	496	606	8.13
2013	286	342	472	6.11	381	371	545	7.21

US 34 Corridor Intersection Delay (2011-2013)

Year	Northbound/Eastbound Runs		NB/EB Average		Southbound/Westbound Runs		SB/WB Average	
2011	169	166	243	3.21	175	191	304	
2012	131	143	265	2.99	203	298	331	4.72
2013	131	138	239	2.82	222	275	516	5.63

US 34 Business Corridor Intersection Delay (2011-2013)

Year	Northbound/Eastbound Runs		NB/EB Average	Southbound/Westbound Runs		SB/WB Average		
2011	109	128	119	1.98	137	143	148	2.38
2012	159	170	148	2.65	136	206	229	3.17
2013	161	239	196	3.31	149	131	178	2.54

I-25 Corridor Accidents by Year (source: CDOT database)

Year	$\mathrm{I}-25$	Parallel Facilities (Non-SH)	Total
2002	500	194	694
2003	511	227	738
2004	561	230	791
2005	553	224	777
2006	495	236	731
2007	611	281	892
2008	433		433
2009	456		456
2010	510		510
2011	626		626
2012	578		871

US 287 Corridor Accidents by Year (source: CDOT database)

Year	US 287	Parallel Facilities (Non-SH)	Total
2002	996	843	1839
2003	1049	759	1808
2004	991	683	1674
2005	985	590	1575
2006	870	646	1516
2007	826	602	1428
2008	798		798
2009	867		867
2010	839	550	839
2011	792		792
2012	861		1411

US 34 Corridor Accidents by Year (source: CDOT database)

Year	US 34	Parallel Facilities (Non-SH)	Parallel Facilities (SH)	All Parallel Facilities	Total
2002	496	132	291	423	919
2003	524	84	284	368	892
2004	454	137	321	458	912
2005	453	108	318	426	879
2006	493	100	306	406	899
2007	474		380	484	958
2008	407		278	307	714
2009	385		283	278	663
2010	454		267	283	737
2011	454		322	267	721
2012	488			422	910

Summary Van Data (source: VanGo)

	Year					
Corridor	2007	2008	2009	2010	2011	2012
I-25	55	65	57	64	72	66
US 287	8	5	5	5	8	9
US 34	7	9	6	2	1	2
US 85	3	5	4	4	3	0
Other	2	7	12	3	1	0
Total	75	91	84	82	85	78

Transit Ridership

(sources: Transfort, GET, COLT, BATS, SAINT)

Provider	2007	2008	2009	2010	2011	2012
Transfort	$1,641,407$	$1,884,197$	$1,904,229$	$2,034,195$	$2,156,791$	$2,271,732$
GET	504,487	541,770	556,065	517,582	507,271	539,515
COLT	115,895	136,255	155,695	138,284	133,355	142,287
BATS	12,189	11,885	14,273	13,397	13,254	9,739
SAINT	20,186	20,165	19,327	20,586	21,000	25,000
TOTAL	$2,294,164$	$2,594,272$	$2,649,589$	$2,724,044$	$2,831,671$	$2,988,273$

Connectivity Index

Municipality	Links	Nodes	Index	Rank
Garden City	38	18	2.111	1
Windsor	1453	744	1.953	2
Timnath	331	170	1.947	3
Milliken	614	318	1.931	4
Severance	294	153	1.922	5
Berthoud	577	304	1.898	6
Eaton	408	219	1.863	7
Fort Collins	7892	4298	1.836	8
Johnstown	783	428	1.829	9
Greeley	4551	2501	1.820	10
Evans	1100	607	1.812	11
La Salle	159	88	1.807	12
Loveland	4226	2355	1.794	13

Transit Route \& RTD park-N-Ride Analysis

Bicycle Routes \& Trails Analysis

transportation planning process. This section continues to allow NEPA studies to be initiated, even during the Alternative Analysis/corridor study process.

Another concern was that this section permits the elimination of alternatives but does not provide for the selection of a preferred alternative. Additionally, a subsequent comment indicated that this section does not require the consideration of all reasonable alternatives. As is permitted by the Council on Environmental Quality's regulations, a project sponsor can select a preferred alternative at any time in the project development process but the overall environmental analysis cannot be slanted to support the preferred alternative nor does the identification of a preferred alternative eliminate the requirement to study all reasonable alternatives as part of the environmental analysis. The FHWA and the FTA believe that the rule allows for State DOTs, MPOs and public transportation operators who choose to use planning studies as part of the overall project development process to eliminate alternatives as well as select preferred alternatives, as appropriate. Therefore, no change was made to the rule.
These comments also pointed out that the FTA requires alternatives analysis for New Starts project, but no comparable requirement is specified for highway projects. Unlike FTA's formula funded programs, New Starts has a competition based eligibility requirement and, as such, the FTA requires a level of evaluation and analysis to screen the potential myriad requests they receive for limited funds. Traditionally, applicants select proposed highway projects as part of FHWA's formula funded programs. When Congress authorizes a competition-based highway program similar to New Starts, the FHWA has established criteria to evaluate and select projects that are eligible for those funds.
It was also noted that $\S 450.322$ (Development and content of the metropolitan transportation plan) requires (in nonattainment and maintenance areas) design concept and scope be identified for projects. This comment raises several issues relative to actual application of the transportation planning process more than the regulation itself. For transportation demand modeling purposes and to meet the requirements of this part, the MPO and/or State DOT uses basic tools (e.g. engineering, capacity, past history, etc.) to identify the design concept and scope of a project, without conducting a formal corridor study. These early
decisions are generally made on a broad corridor basis and will be refined as the project advances towards implementation. The commenter appears to favor this section of the rule being mandatory rather than permissive in an attempt to further the state of the practice of planning. Encouragement and incentives for good transportation planning were proffered by the commenter as tools to be used to increase the desirability of conducting corridor studies. The FHWA and the FTA believe Appendix A provides this encouragement and incentives for good transportation planning in identifying ways to utilize planning corridor studies and thereby reduce the amount of repetitive work in the NEPA process. We appreciate the support for the concepts in this section, but, based on all the comments received, find that it is most appropriate for this section to remain voluntary and permissive.

Section 450.320 Congestion Management Process in Transportation Management Areas

The docket included more than 25 documents that contained almost 30 comments on this section with about one-third from State DOTs, one-fifth from national and regional advocacy organizations, half from MPOs and COGs, and the rest from transit operators.

On May 16, 2006, the U.S. Secretary of Transportation announced a national initiative to address congestion related to highway, freight and aviation. ${ }^{13}$ The intent of the "National Strategy to Reduce Congestion on America's Transportation Network" is to provide a blueprint for Federal, State and local officials to tackle congestion. USDOT encourages the States and MPO(s) to seek Urban Partnership Agreements with a handful of communities willing to demonstrate new congestion relief strategies and encourages states to pass legislation giving the private sector a broader opportunity to invest in transportation. It calls for more widespread deployment of new operational technologies and practices that end traffic tie-ups, designates new interstate "corridors of the future,"

[^1]targets port and border congestion, and expands aviation capacity.
U.S. DOT encourages State DOTs and MPOs to consider and implement strategies, specifically related to highway and transit operations and expansion, freight, transportation pricing, other vehicle-based charges techniques, congestion pricing, electronic toll collection, quick crash removal, etc. The mechanism that the State DOTs and MPOs employ to explore these strategies is within their discretion. The USDOT will focus its resources, funding, staff and technology to cut traffic jams and relieve freight bottlenecks.
A few commenters reiterated that the congestion management process (CMP) should result in multimodal system performance measures and strategies. The FHWA and the FTA note that existing language reflects the multimodal nature of the CMP. Existing language (§450.320(a)(2)) specifically allows for the appropriate performance measures for the CMP to be determined cooperatively by the State(s), affected MPO(s), and local officials in consultation with the operators of major modes of transportation in the coverage area.
Most of the comments pointed out that the provisions of $\S 450.320$ (e) pertaining to projects that add significant new carrying capacity for Single Occupant Vehicles (SOVs) applies in "Carbon Monoxide (CO) and Ozone Nonattainment TMAs," but does not apply to TMAs in air quality maintenance areas. The FHWA and the FTA agree and have clarified the language in paragraph (e). We also clarified that this provision applies to projects "to be advanced with Federal funds."
Several commenters asked for a clarification regarding what CMP requirements apply in air quality maintenance and attainment areas, as opposed to the requirements in air quality nonattainment areas. The CMP requirements for all TMA areas (attainment, maintenance and nonattainment) are identified in § 450.320(a), §450.320(b), §450.320(c), and §450.320(f). Additional CMP requirements that apply only to nonattainment TMA areas (for ozone and carbon monoxide) are identified in § 450.320 (d) and § 450.320 (e).

Another commenter asked for clarification regarding the exact requirements for a CMP and how the CMP is integrated with the metropolitan transportation plan. As noted above, the specific CMP requirements for all TMAs, regardless of air quality status, are identified in this section. The CMP
in this section is not described as, nor intended to be, a stand-alone process, but an integral element of the transportation planning process. To reinforce the integration of the CMP and the metropolitan transportation plan, §450.322(f)(4) requires that the metropolitan transportation plan shall include "consideration of the results of the congestion management process in TMAs that meet the requirements of this subpart, including the identification of SOV projects that result from a congestion management process in TMAs that are nonattainment for carbon monoxide or ozone."

One commenter asked for examples of the reasonable travel demand reduction and operational management strategies as required in $\S 450.320$ (e). Examples of such strategies include, but are not limited to: Transportation demand management measures such as car and vanpooling, flexible work hours compressed work weeks and telecommuting; Roadway system operational improvements, such as improved traffic signal coordination, pavement markings and intersection improvements, and incident management programs; Public transit system capital and operational improvements; Access management program; New or improved sidewalks and designated bicycle lanes; and Land use policies/regulations to encourage more efficient patterns of commercial or residential development in defined growth areas.

Section 450.322 Development and Content of the Metropolitan Transportation Plan

There were over 160 separate comments on this section, mostly from MPOs and COGs, followed by national and regional advocacy organizations and State DOTs. A number of comments also came from public transportation providers with the remainder coming from local government agencies, the general public or other sources.

Several MPOs and COGs and national and regional advocacy organizations that commented on this section asked for clarification regarding the 20-year planning horizon in paragraph (a). The FHWA and the FTA want to provide MPOs flexibility on how to treat the metropolitan transportation plan at the time of a revision. The actual effective date of a metropolitan transportation plan update may be dependent upon several factors, including the intent of the MPO, the magnitude of the metropolitan transportation plan revision and whether conformity needs to be determined. To specifically indicate in the final rule when a
"revision" may be considered a full "update" could result in limiting flexibility. For more information on this topic, refer to the "Definitions" section of this rule.

A small number of MPOs and COGs and national and regional advocacy organizations that commented on this section asked for clarification in paragraph (b) between long-range and short-range strategies. The FHWA and the FTA carried forward the language regarding short and long-range strategies from the October 1993 planning rule. Generally, long-range are those strategies and actions expected to be implemented beyond 10 years.

A small number of national and regional advocacy organizations also commented that the transportation demand referenced in paragraph (b) should be balanced with the environment and other factors. The FHWA and the FTA find that the balance with environmental concerns is adequately raised in other parts of the rule both in this section and in §450.306 (Scope of the metropolitan transportation planning process).

A small number of MPOs that commented on this section wrote in support of paragraph (c) relating to the cycles for reviews and updates. The FHWA and the FTA note that this paragraph revises and supercedes the April 12, 2005, guidance on "Plan Horizons" allowing MPOs to "revise the metropolitan transportation plan at any time using the procedures in this section without a requirement to extend the horizon year."

A small number of State DOTs and national and regional advocacy organizations that commented on this section said in regard to paragraph (d) that the proposed language limits consultation between State air quality agencies and MPOs in ozone and carbon monoxide (CO) nonattainment and maintenance areas. Transportation control measures (TCMs) can apply to all pollutants so this section should refer to all types of nonattainment and maintenance areas.

Paragraph (d) addresses the MPO's coordination in the development of the TCMs in a SIP in ozone and CO nonattainment areas, pursuant to 49 U.S.C 5303(i)(3). The FHWA and the FTA are clarifying in the final rule the role of the MPO in the development of SIP TCMs, to be more consistent with the statute. Similar coordination is encouraged in the development of SIP TCMs in ozone and CO maintenance areas, as well as particulate matter and nitrogen dioxide nonattainment and maintenance areas. The FHWA and the FTA had proposed additional language
in paragraph (d) that specified that the MPO, State air quality agency and the EPA must concur on the equivalency of any substitute TCM before an existing SIP TCM is replaced under section 176(c)(8) of the Clean Air Act (42 U.S.C. 7506(c)(8)). After consultation with the EPA, this language was deemed unnecessary for the final planning regulations. The EPA has determined that revising the transportation conformity regulations is not necessary to implement the TCM substitution provision in Section 6011(d) of the SAFETEA-LU. The EPA believes that the new Clean Air Act provision contains sufficient detail to allow the provision to be implemented without further regulation. The EPA, the FHWA, and the FTA issued joint guidance on February 14, 2006, that describes how TCM substitutions can occur under the statute. ${ }^{14}$
A small number of State DOTs and a few MPOs and COGs that commented on this section said in regards to paragraph (e) that the requirement for "agreement" is too stringent. The FHWA and the FTA find that a "cooperative" planning process requires agreement among the major planning partners on what assumptions to adopt and what data and analyses to employ to forecast future travel demand. If a State or transit operator conducts a major planning study within the MPO planning boundaries, it is critical that the assumptions and data used in that planning study be considered valid by other planning partners and be consistent with data the MPO will employ to develop its travel models or otherwise develop growth projections in population, employment, land use, and other key factors that affect future travel demand. Both consultation and agreement on those assumptions/data are crucial to this process. However, the FHWA and the FTA also understand that the proposed text may be considered overly restrictive. We eliminated the phrase "the transportation plan update process shall include a mechanism for ensuring that * * * agree * * *"’ and replaced it with "the MPO, the State(s), and the public transportation operator(s) shall validate * * *" The FHWA and the FTA believe that the requirement "validate data" provides more flexibility than "including a mechanism."

[^2]improvement program (STIP), § 450.322 (Development and content of the metropolitan transportation plan), and $\S 450.324$ (Development and content of the transportation improvement program). These key features are: (1) Treatment of highway and transit operations and maintenance costs and revenues; (2) use of "year of expenditure dollars" in developing cost and revenue estimates; and (3) use of "cost ranges/ cost bands" in the outer years of the metropolitan transportation plan.
Regarding the treatment of highway and transit operations and maintenance costs and revenues, the FHWA and the FTA realize that the 1993 planning rule and the NPRM interchangeably referred to the transportation system as either "existing," "total," or "entire."
Several State DOTs, MPOs and COGs, national and regional advocacy organizations, and others expressed concern and confusion over these terms Many commenters called into question the statutory authority for the FHWA and the FTA to focus on State and local government investments to operate and maintain the "system" as part of fiscal constraint and financial plans supporting transportation plans and programs. However, the statute, as amended by the SAFETEA-LU (23 U.S.C. $134(\mathrm{i})(2)(\mathrm{C})$ and 49 U.S.C. 5303(i)(2)(C)), requires that the financial element of a metropolitan transportation plan "demonstrates how the adopted transportation plan can be implemented" and "indicates resources from public and private sources" that can be "reasonably anticipated to implement the plan." A metropolitan transportation plan, as it is developed, must include consideration and recognition of how all the pieces of the regional transportation system will integrate, function and operate, not just those facilities which are or could be funded with Federal resources. To focus solely on the Federally-funded portion of the transportation system could create greater demands on limited Federal resources or jeopardize the value of the Federal investments made within that metropolitan area.
Furthermore, outside the transportation planning process, there is a longstanding Federal requirement that States properly maintain, or cause to be maintained, any projects constructed under the Federal-aid Highway Program (23 U.S.C. 116).
Additionally, the FHWA and the FTA believe that the fundamental premise behind the wording in the October 28, 1993 planning rule regarding highway and transit operations and maintenance (58 FR 58040) remains sound.

However, for purposes of clarity and consistency, § 450.216(n), $\S 450.322(\mathrm{f})(10)$, and § 450.324(i) have been revised to better describe "the system" as Federal-aid highways (as defined by 23 U.S.C. 101(a)(5)) and public transportation (as defined by title 49 U.S.C. Chapter 53). As background, 23 U.S.C. 101(a)(5) defines "Federal-aid highways" as "a highway eligible for assistance other than a highway classified as a local road or rural minor collector." Additionally, these sections clarify that the financial plans supporting the metropolitan transportation plan and TIP and the financial information supporting the STIP are to be based on systems-level estimates of costs and revenue sources reasonably expected to be available to adequately operate and maintain Federal-aid highways (as defined by 23 U.S.C. 101(a)(5)) and public transportation (as defined by title 49 U.S.C. Chapter 53).

Regarding the use of "year of expenditure dollars"' in developing cost and revenue estimates, the FHWA and the FTA jointly issued "Interim FHWA/ FTA Guidance on Fiscal Constraint for STIPs, TIPs, and Metropolitan Plans"' on June 30, 2005. 22 This Interim Guidance indicated that financial forecasts (for costs and revenues) to support the metropolitan transportation plan, TIP, and STIP may: (a) Rely on a "constant dollar" base year or (b) utilize an inflation rate(s) to reflect "year expenditure." The FHWA and the FTA will be developing and issuing revised guidance on fiscal constraint and financial planning for transportation plans and programs soon after this rule is published. In Appendix B, the FHWA and the FTA proposed to exclusively require the use of "year of expenditure dollars" to better reflect the time-based value of money. This is particularly crucial for large-scale projects with construction/implementation dates stretching into the future. Because the transportation planning process serves as the beginning point of the larger "project continuum" (i.e., moving from concept through construction, and later operations and maintenance), the FHWA and the FTA strongly believe that early disclosure of revenue and cost estimates reflecting time and inflation provides a truer set of expectations and future "reality" to the public. However, most of the State DOTs, a few of the national and regional advocacy

[^3]organizations and some MPOs and COGs, commented that they should not be required to use "year of expenditure dollars."

The FHWA and the FTA considered these comments and included in $\S 450.216(\mathrm{~h}), \S 450.322(\mathrm{f})(10)$, and $\S 450.324(\mathrm{~d})$ that "year of expenditure dollars" shall be used "to the extent practicable." While this language expresses the desire of the FHWA and the FTA for revenue and cost estimates to be reflected in "year of expenditure dollars," an opportunity to use "constant dollars" has been retained.
Regarding the use of "cost ranges/cost bands" in the outer years of the metropolitan transportation plan, the FHWA and the FTA jointly issued "Interim Guidance on Fiscal Constraint for STIPs, TIPs, and Metropolitan Plans" on June 30, 2005. The FHWA and the FTA will be developing and issuing revised guidance on fiscal constraint and financial planning for transportation plans and programs soon after this rule is published. The Interim Guidance indicated that for the outer years of the metropolitan transportation plan (i.e., beyond the first 10 years), the financial plan may reflect aggregate cost ranges/cost bands, as long as the future funding source(s) is reasonably expected to be available to support the projected cost ranges/cost bands. In the NPRM, the FHWA and the FTA proposed to provide this option to MPOs in developing fiscally-constrained metropolitan transportation plans. We have included this option in this rule because we believe it gives MPOs maximum flexibility to broadly define a large-scale transportation issue or problem to be addressed in the future that does not predispose a NEPA decision, while, at the same time, calling for the definition of a future funding source(s) that encompasses the planning-level "cost range/cost band."

23 CFR Part 500

Section 500.109 Congestion

Management Systems

Few docket documents specifically referenced this section. However, the docket included more than 25 documents that contained almost 30 comments on § 450.320 (Congestion management process in transportation management areas) which is relevant to this section.

As was mentioned, on May 16, 2006, the U.S. Secretary of Transportation announced a national initiative to address congestion related to highway, freight and aviation. The intent of the "National Strategy to Reduce Congestion on America's Transportation

Network" is to provide a blueprint for Federal, State and local officials to tackle congestion. The States and MPO(s) are encouraged to seek Urban Partnership Agreements with a handful of communities willing to demonstrate new congestion relief strategies and encourages States to pass legislation giving the private sector a broader opportunity to invest in transportation. It calls for more widespread deployment of new operational technologies and practices that end traffic tie ups, designates new interstate "corridors of the future," targets port and border congestion, and expands aviation capacity.
U.S. DOT encourages the State DOTs and MPOs to consider and implement strategies, specifically related to highway and transit operations and expansion, freight, transportation pricing, other vehicle-based charges techniques, etc. The mechanism that the State DOTs and MPOs employ to explore these strategies is within their discretion. The U.S. DOT will focus its resources, funding, staff and technology to cut traffic jams and relieve freight bottlenecks.

A few comments were received reiterating that the CMP should result in multimodal system performance measures and strategies. The FHWA and the FTA note that existing language reflects the multimodal nature of the CMP. Specifically, § 450.320(a)(2) allows for the appropriate performance measures for the CMP to be determined cooperatively by the State(s), affected MPO(s), and local officials in consultation with the operators of major modes of transportation in the coverage area.

Several commenters asked for a clarification with regards to what CMP requirements apply in air quality attainment areas, as opposed to the requirements in air quality nonattainment areas. The CMP requirements for all TMA areas (attainment and nonattainment) are identified in $\S \S 450.320(\mathrm{a}), 450.320$ (b), 450.320(c), and 450.320(f). Additional CMP requirements that apply only to nonattainment TMA areas (for CO and ozone) are identified in $\S 450.320$ (d) and §450.320(e).

49 CFR Part 613

The NPRM proposed to simplify FTA's cross-reference in 49 CFR Part 613 to 23 CFR Part 450. Because there may be references to the three subparts in 49 CFR Part 613 in various other regulatory and guidance documents, FTA has made technical changes to what was proposed in the NPRM to retain the names of the subparts in this part the same as they were prior to this rule. This will reduce confusion by keeping the names of the subparts the same, but still allowing for the crossreference simplification and alignment of identical regulatory requirements that FTA had proposed.

Distribution Tables

The NPRM proposed to clarify and revise the regulation's section headings to use plainer language. These changes have been made. For ease of reference, two distribution tables are provided for the current sections and the proposed sections as follows. The first distribution table indicates changes in section numbering and titles. The second provides details within each section.

Section Title and Number

Old section	New section
Subpart A	Subpart A
450.100 Purpose	450.100 Purpose.
450.102 Applicability	450.102 Applicability.
450.104 Definitions	450.104 Definitions.
Subpart B	Subpart B
450.200 Purpose	450.200 Purpose.
450.202 Applicability	450.202 Applicability.
450.204 Definitions	450.204 Definitions.
450.206 Statewide transportation planning process: General require- ments.	450.206 Scope of the statewide transportation planning process.
450.208 Statewide transportation planning process: Factors	450.208 Coordination of planning process activities.
450.210 Coordination	450.210 Interested parties, public involvement, and consultation. 450.212 Transportation planning studies and project development.
450.212 Public involvement	450.214 Development and content of the long-range statewide transportation plan.
450.214 Statewide transportation plan	450.216 Development and content of the statewide transportation improvement program (STIP).
450.216 Statewide transportation ...	450.218 Self-certifications, Federal improvement program (STIP). findings, and Federal approvals.
450.218 Funding	450.220 Project selection from the STIP.
450.220 Approvals	450.222 Applicability of NEPA to statewide transportation plans and programs.
450.222 Project selection for implementation \qquad Subpart C	450.224 Phase-in of new requirements. Subpart C
450.300 Purpose	450.300 Purpose.
450.302 Applicability ..	450.302 Applicability.
450.304 Definitions	450.304 Definitions.
450.306 Metropolitan planning organizations: Designation and redesignation.	450.306 Scope of the metropolitan transportation planning process.
450.308 Metropolitan planning organization: Metropolitan planning boundary.	450.308 Funding for transportation planning and unified planning work programs.
450.310 Metropolitan planning organization: planning agreements	450.310 Metropolitan planning organization designation and redesignation.
450.312 Metropolitan transportation planning: Responsibilities, cooperation, and coordination.	450.312 Metropolitan planning area boundaries.
450.314 Metropolitan transportation planning process: Unified planning work programs.	450.314 Metropolitan planning agreements.

engineering paths to transportation solutions

6300 South Syracuse Way, Suite 600 | Centennial, C0 80111 | tel 303.721.1440 | fax 303.721.0832

[^0]: ${ }^{1}$ The parameters of the CMP as approved by the NFRMPO Planning Council are outlined in the 2035 Regional Transportation Plan Update

[^1]: ${ }^{13}$ Speaking before the National Retail Federation's annual conference on May 16, 2006, in Washington, DC, former U.S. Transportation Secretary Norman Mineta unveiled a new plan to reduce congestion plaguing America's roads, rails and airports. The National Strategy to Reduce Congestion on America's Transportation Network includes a number of initiatives designed to reduce transportation congestion. The transcript of these remarks is available at the following URL: http:// www.dot.gov/affairs/minetasp051606.htm.

[^2]: ${ }^{14}$ This joint guidance entitled, "Interim Guidance for Implementing the Transportation Conformity Provisions in the Safe, Accountable, Flexible, Efficient Transportation Equity Act: A Legacy for Users," dated February 14, 2006, is available via the Internet at the following URL: http:// www.fhwa.dot.gov/environment/conformity/ sec6011guidmemo.htm.

[^3]: ${ }^{22}$ This joint guidance, 'Interim FHWA/FTA Guidance on Fiscal Constraint for STIPs, TIPs and Metropolitan Plans," dated June 27, 2005, is available via the Internet at the following URL: http://www.fhwa.dot.gov/planning/fcindex.htm.

